European Journal of Nutrition

, Volume 53, Issue 7, pp 1445–1456 | Cite as

Three-month B vitamin supplementation in pre-school children affects folate status and homocysteine, but not cognitive performance

  • Astrid Rauh-Pfeiffer
  • Uschi Handel
  • Hans Demmelmair
  • Wolfgang Peissner
  • Mareile Niesser
  • Diego Moretti
  • Vanessa Martens
  • Sheila Wiseman
  • Judith Weichert
  • Moritz Heene
  • Markus Bühner
  • Berthold Koletzko
Original Contribution

Abstract

Background

Suboptimal vitamin B status might affect cognitive performance in early childhood. We tested the hypothesis that short-term supplementation with folic acid and selected B vitamins improves cognitive function in healthy children in a population with relatively low folate status.

Methods

We screened 1,002 kindergarten children for suboptimal folate status by assessing the total urinary para-aminobenzoylglutamate excretion. Two hundred and fifty low ranking subjects were recruited into a double blind, randomized, controlled trial to receive daily a sachet containing 220 μg folic acid, 1.1 mg vitamin B2, 0.73 mg B6, 1.2 μg B12 and 130 mg calcium, or calcium only for 3 months. Primary outcomes were changes in verbal IQ, short-term memory and processing speed between baseline and study end. Secondary outcomes were urinary markers of folate and vitamin B12 status, acetyl-para-aminobenzoylglutamate and methylmalonic acid, respectively, and, in a subgroup of 120 participants, blood folate and plasma homocysteine.

Results

Pre- and post-intervention cognitive measurements were completed by 115 children in the intervention and 122 in the control group. Compared to control, median blood folate increased by about 50 % (P for difference, P < 0.0001). Homocysteine decreased by 1.1 μmol/L compared to baseline, no change was seen in the control group (P for difference P < 0.0001) and acetyl-para-aminobenzoylglutamate was 4 nmol/mmol higher compared to control at the end of the intervention (P < 0.0001). We found no relevant differences between the groups for the cognitive measures.

Conclusion

Short-term improvement of folate and homocysteine status in healthy children does not appear to affect cognitive performance.

Keywords

B vitamin supplementation Cognition Pre-school children 

Notes

Acknowledgments

We thank the participating families and kindergarten staff for their enthusiastic support of the project. We thank Sabine Eiselen (Dr von Hauner Children’s Hospital, University of Munich Medical Centre, Munich, Germany) for practical organization of the study, Martina Weber (Dr von Hauner Children’s Hospital, University of Munich Medical Centre, Munich, Germany) and Winfried Theis (Unilever R&D, Vlaardingen, Netherlands) for statistical advice, Christian Hellmuth (Dr von Hauner Children’s Hospital, University of Munich Medical Centre, Munich, Germany) for laboratory analyses, and Ingrid Pawellek (Dr von Hauner Children’s Hospital, University of Munich Medical Centre, Munich, Germany) for the evaluation of the food frequency questionnaires. MMA analyses (Institute for Clinical Chemistry, University of Munich Medical Centre, Munich, Germany) were supported by the Hans-Fischer-Gesellschaft, München. This work was supported financially in part by NUTRIMENTHE (Grant Agreement No. 212652). This project was also supported by Unilever R&D, Vlaardingen, The Netherlands.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bryan J, Osendarp S, Hughes D, Calvaresi E, Baghurst K, van Klinken JW (2004) Nutrients for cognitive development in school-aged children. Nutr Rev 62:295–306CrossRefGoogle Scholar
  2. 2.
    Bailey LB, Gregory JF III (1999) Folate metabolism and requirements. J Nutr 129:779–782Google Scholar
  3. 3.
    Crowe SF, Ross CK (1997) Effect of folate deficiency and folate and B12 excess on memory functioning in young chicks. Pharmacol Biochem Behav 56:189–197CrossRefGoogle Scholar
  4. 4.
    Troen AM, Shukitt-Hale B, Chao WH, Albuquerque B, Smith DE, Selhub J, Rosenberg J (2006) The cognitive impact of nutritional homocysteinemia in apolipoprotein-E deficient mice. J Alzheimers Dis 9:381–392Google Scholar
  5. 5.
    Lalonde R, Barraud H, Ravey J, Gueant JL, Bronowicki JP, Strazielle C (2008) Effects of a B-vitamin-deficient diet on exploratory activity, motor coordination, and spatial learning in young adult Balb/c mice. Brain Res 1188:122–131. doi:10.1016/j.brainres.2007.10.068 CrossRefGoogle Scholar
  6. 6.
    Arija V, Esparó G, Fernández-Ballart J, Murphy MM, Biarnés E, Canals J (2006) Nutritional status and performance in test of verbal and non-verbal intelligence in 6 year old children. Intelligence 34:141–149. doi:10.1016/j.intell.2005.09.001 CrossRefGoogle Scholar
  7. 7.
    Strand TA, Taneja S, Ueland PM, Refsum H, Bahl R, Schneede J, Sommerfelt H, Bhandari N (2013) Cobalamin and folate status predicts mental development scores in North Indian children 12–18 mo of age. Am J Clin Nutr 97:310–317. doi:10.3945/ajcn.111.032268 CrossRefGoogle Scholar
  8. 8.
    Bryan J, Calvaresi E, Hughes D (2002) Short-term folate, vitamin B-12 or vitamin B-6 supplementation slightly affects memory performance but not mood in women of various ages. J Nutr 132:1345–1356Google Scholar
  9. 9.
    Louwman MW, van Dusseldorp M, van de Vijver FJ, Thomas CM, Schneede J, Ueland PM, Refsum H, van Staveren WA (2000) Signs of impaired cognitive function in adolescents with marginal cobalamin status. Am J Clin Nutr 72:762–769Google Scholar
  10. 10.
    Gewa CA, Weiss RE, Bwibo NO, Whaley S, Sigman M, Murphy SP, Harrison G, Neumann CG (2009) Dietary micronutrients are associated with higher cognitive function gains among primary school children in rural Kenya. Br J Nutr 101:1378–1387. doi:10.1017/S0007114508066804 CrossRefGoogle Scholar
  11. 11.
    Homocysteine Lowering Trialists’ Collaboration (1998) Lowering blood homocysteine with folic acid based supplements: meta-analysis of randomised trials. BMJ 316:894–898Google Scholar
  12. 12.
    Lonn E, Yusuf S, Arnold MJ, Sheridan P, Pogue J, Micks M, McQueen MJ, Probstfield J, Fodor G, Held C, Genest J Jr (2006) Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med 354:1567–1577. doi:10.1056/NEJMoa060900 CrossRefGoogle Scholar
  13. 13.
    Ueland PM, Monsen AL (2003) Hyperhomocysteinemia and B-vitamin deficiencies in infants and children. Clin Chem Lab Med 41:1418–1426. doi:10.1515/CCLM.2003.218 CrossRefGoogle Scholar
  14. 14.
    Sichert-Hellert W, Wenz G, Kersting M (2006) Vitamin intakes from supplements and fortified food in German children and adolescents: results from the DONALD study. J Nutr 136:1329–1333Google Scholar
  15. 15.
    Mensink GBE, Herseker H, Richter A, Stahl A, Vohmann C (2007) Ernährungstudie als KIGGS-Modul (EsKiMo), German [KIGGS nutrition survey]. In: Robert Koch Institut and Universität Paderborn, Berlin and PaderbornGoogle Scholar
  16. 16.
    Wolfe JM, Bailey LB, Herrlinger-Garcia K, Theriaque DW, Gregory JF III, Kauwell GP (2003) Folate catabolite excretion is responsive to changes in dietary folate intake in elderly women. Am J Clin Nutr 77:919–923Google Scholar
  17. 17.
    Kim HA, Choi JH, Lim HS (2007) Childbearing women of twenty and under are at greater risk than those of twenty-five and over for compromised folate status. Nutr Res Pract 1:254–259. doi:10.4162/nrp.2007.1.4.254 CrossRefGoogle Scholar
  18. 18.
    Moher D, Schulz KF, Altman D (2001) The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomized trials. JAMA 285:1987–1991CrossRefGoogle Scholar
  19. 19.
    Scientific Committee on Food & Scientific Panel on Dietetic Products Nutrition and Allergies (2006) Tolerable upper intake levels for vitamins and minerals. In: European Food Safety AuthorityGoogle Scholar
  20. 20.
    Ricken G, Fritz A, Schuck KD, Preuß U (eds) (2007) HAWIVA-III, Hannover-Wechsler-Intelligenztest für das Vorschulalter-III, German [HAWIVA-III, Hannover-Wechsler-Preschool Scale of Intelligence-III]. Huber, GöttingenGoogle Scholar
  21. 21.
    Wechsler D (2002) Wechsler Preschool and Primary Scale of Intelligence-III (WPPSI-III). The Psychological Corporation, San Antonio, TXGoogle Scholar
  22. 22.
    Kaufman AS, Kaufman NL (1983) Kaufman assessment battery for children: K-ABC. American Guidance Service, Circle Pines, MNGoogle Scholar
  23. 23.
    Melchers P, Preuß U (2005) Kaufman assessment battery for children. Pearson Assessment, Frankfurt/MainGoogle Scholar
  24. 24.
    Bartels H, Böhmer M, Heierli C (1972) Serum kreatininbestimmung ohne enteiweissen, German [Serum creatinine determination without protein precipitation]. Clin Chim Acta 37:193–197. doi:10.1016/0009-8981(72)90432-9 CrossRefGoogle Scholar
  25. 25.
    Niesser M, Harder U, Koletzko B, Peissner W (2013) Quantification of urinary folate catabolites using liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 929:116–124. doi:10.1016/j.jchromb.2013.04.008 CrossRefGoogle Scholar
  26. 26.
    Matchar DB, Feussner JR, Millington DS, Wilkinson RH Jr, Watson DJ, Gale D (1987) Isotope-dilution assay for urinary methylmalonic acid in the diagnosis of vitamin B12 deficiency. A prospective clinical evaluation. Ann Intern Med 106:707–710CrossRefGoogle Scholar
  27. 27.
    O’Broin S, Kelleher B (1992) Microbiological assay on microtitre plates of folate in serum and red cells. J Clin Pathol 45:344–347CrossRefGoogle Scholar
  28. 28.
    Heuck CC, Reinauer H, Wood WG (2008) The alkaline haematin detergent (AHD575) method for the determination of haemoglobin in blood–a candidate reference measurement procedure. Clin Lab 54:255–272Google Scholar
  29. 29.
    Hellmuth C, Koletzko B, Peissner W (2011) Aqueous normal phase chromatography improves quantification and qualification of homocysteine, cysteine and methionine by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 879:83–89. doi:10.1016/j.jchromb.2010.11.016 CrossRefGoogle Scholar
  30. 30.
    Huemer M, Vonblon K, Fodinger M, Krumpholz R, Hubmann M, Ulmer H, Simma B (2006) Total homocysteine, folate, and cobalamin, and their relation to genetic polymorphisms, lifestyle and body mass index in healthy children and adolescents. Pediatr Res 60:764–769. doi:10.1203/01.pdr.0000246099.39469.18 CrossRefGoogle Scholar
  31. 31.
    R Development Core Team (2010) R: A language and environment for statistical computing. In: R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  32. 32.
    Heseker H, Kuebler W, Westenhoefer J, Pudel V (1990) Psychische Veraenderungen als Fruehzeichen einer suboptimalen Vitaminversorgung, German [Psychic changes as early symptoms of suboptimal vitamin supply]. 2. Ernaehrungs-Umschau 37:87–94Google Scholar
  33. 33.
    Haskell CF, Scholey AB, Jackson PA, Elliott JM, Defeyter MA, Greer J, Robertson BC, Buchanan T, Tiplady B, Kennedy DO (2008) Cognitive and mood effects in healthy children during 12 weeks’ supplementation with multi-vitamin/minerals. Br J Nutr 100:1086–1096. doi:10.1017/S0007114508959213 CrossRefGoogle Scholar
  34. 34.
    Osendarp SJ, Baghurst KI, Bryan J, Calvaresi E, Hughes D, Hussaini M, Karyadi SJ, van Klinken BJ, van der Knaap HC, Lukito W, Mikarsa W, Transler C, Wilson C (2007) Effect of a 12-mo micronutrient intervention on learning and memory in well-nourished and marginally nourished school-aged children: 2 parallel, randomized, placebo-controlled studies in Australia and Indonesia. Am J Clin Nutr 86:1082–1093Google Scholar
  35. 35.
    Durga J, Verhoef P, Anteunis LJ, Schouten E, Kok FJ (2007) Effects of folic acid supplementation on hearing in older adults: a randomized, controlled trial. Ann Intern Med 146:1–9CrossRefGoogle Scholar
  36. 36.
    Vogel T, Dali-Youcef N, Kaltenbach G, Andres E (2009) Homocysteine, vitamin B12, folate and cognitive functions: a systematic and critical review of the literature. Int J Clin Pract 63:1061–1067. doi:10.1111/j.1742-1241.2009.02026.x CrossRefGoogle Scholar
  37. 37.
    Fabian E, Bogner M, Kickinger A, Wagner KH, Elmadfa I (2011) Intake of medication and vitamin status in the elderly. Ann Nutr Metab 58:118–125. doi:10.1159/000327351 CrossRefGoogle Scholar
  38. 38.
    Mansoor MA, Hervig T, Stakkestad JA, Drablos PA, Apeland T, Wentzel-Larsen T, Bates CJ (2011) Serum folate is significantly correlated with plasma cysteine concentrations in healthy industry workers. Ann Nutr Metab 58:68–73. doi:10.1159/000325537 CrossRefGoogle Scholar
  39. 39.
    O’Broin SD, Kelleher BP, Davoren A, Gunter EW (1997) Field-study screening of blood folate concentrations: specimen stability and finger-stick sampling. Am J Clin Nutr 66:1398–1405Google Scholar
  40. 40.
    Kerr MA, Livingstone B, Bates CJ, Bradbury I, Scott JM, Ward M, Pentieva K, Mansoor MA, McNulty H (2009) Folate, related B vitamins, and homocysteine in childhood and adolescence: potential implications for disease risk in later life. Pediatrics 123:627–635. doi:10.1542/peds.2008-1049 CrossRefGoogle Scholar
  41. 41.
    Pfeiffer CM, Johnson CL, Jain RB, Yetley EA, Picciano MF, Rader JI, Fisher KD, Mulinare J, Osterloh JD (2007) Trends in blood folate and vitamin B-12 concentrations in the United States, 1988 2004. Am J Clin Nutr 86:718–727Google Scholar
  42. 42.
    Roza SJ, van Batenburg-Eddes T, Steegers EA, Jaddoe VW, Mackenbach JP, Hofman A, Verhulst FC, Tiemeier H (2010) Maternal folic acid supplement use in early pregnancy and child behavioural problems: The Generation R Study. Br J Nutr 103:445–452. doi:10.1017/S0007114509991954 CrossRefGoogle Scholar
  43. 43.
    Nguyen CT, Gracely EJ, Lee BK (2013) Serum folate but not vitamin B-12 concentrations are positively associated with cognitive test scores in children aged 6–16 years. J Nutr 143:500–504. doi:10.3945/jn.112.166165 CrossRefGoogle Scholar
  44. 44.
    Bjorke-Monsen AL, Torsvik I, Saetran H, Markestad T, Ueland PM (2008) Common metabolic profile in infants indicating impaired cobalamin status responds to cobalamin supplementation. Pediatrics 122:83–91. doi:10.1542/peds.2007-2716 CrossRefGoogle Scholar
  45. 45.
    Torsvik I, Ueland PM, Markestad T, Bjorke-Monsen AL (2013) Cobalamin supplementation improves motor development and regurgitations in infants: results from a randomized intervention study. Am J Clin Nutr 98:1233–1240. doi:10.3945/ajcn.113.061549 CrossRefGoogle Scholar
  46. 46.
    Homocysteine Lowering Trialists’ Collaboration (2005) Dose-dependent effects of folic acid on blood concentrations of homocysteine: a meta-analysis of the randomized trials. Am J Clin Nutr 82:806–812Google Scholar
  47. 47.
    Chew SC, Khor GL, Loh SP (2011) Association between dietary folate intake and blood status of folate and homocysteine in Malaysian adults. J Nutr Sci Vitaminol (Tokyo) 57:150–155CrossRefGoogle Scholar
  48. 48.
    Erdogan E, Nelson GJ, Rockwood AL, Frank EL (2010) Evaluation of reference intervals for methylmalonic acid in plasma/serum and urine. Clin Chim Acta 411:1827–1829. doi:10.1016/j.cca.2010.06.017 CrossRefGoogle Scholar
  49. 49.
    Bjorke Monsen AL, Ueland PM (2003) Homocysteine and methylmalonic acid in diagnosis and risk assessment from infancy to adolescence. Am J Clin Nutr 78:7–21Google Scholar
  50. 50.
    Stanger O, Herrmann W, Pietrzik K, Fowler B, Geisel J, Dierkes J, Weger M, e.V D-LH (2003) DACH-LIGA homocystein (german, austrian and swiss homocysteine society): consensus paper on the rational clinical use of homocysteine, folic acid and B-vitamins in cardiovascular and thrombotic diseases: guidelines and recommendations. Clin Chem Lab Med 41:1392–1403. doi:10.1515/CCLM.2003.214
  51. 51.
    Lentze MJ, Schaub J, Schulte FJ, Spranger J (2007) Pädiatrie: Grundlagen und Praxis, German [Pediatrics: Basics and practice]. In: Springer Medizin Verlag Heidelberg, Berlin, HeidelbergGoogle Scholar
  52. 52.
    Statistisches Bundesamt (ed) (2011) Statistisches Jahrbuch 2011, German [statistical yearbook 2011]. Statistisches Bundesamt, WiesbadenGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Astrid Rauh-Pfeiffer
    • 1
  • Uschi Handel
    • 1
  • Hans Demmelmair
    • 1
  • Wolfgang Peissner
    • 1
  • Mareile Niesser
    • 1
  • Diego Moretti
    • 2
    • 3
  • Vanessa Martens
    • 2
  • Sheila Wiseman
    • 2
  • Judith Weichert
    • 4
  • Moritz Heene
    • 4
  • Markus Bühner
    • 4
  • Berthold Koletzko
    • 1
  1. 1.Dr von Hauner Children’s HospitalUniversity of Munich Medical CentreMunichGermany
  2. 2.Unilever R&DVlaardingenThe Netherlands
  3. 3.Laboratory of Human Nutrition, Institute of Food Science and NutritionETH ZürichZurichSwitzerland
  4. 4.Department of PsychologyUniversity of MunichMunichGermany

Personalised recommendations