Advertisement

European Journal of Nutrition

, Volume 53, Issue 6, pp 1313–1325 | Cite as

Effect of carnitine, acetyl-, and propionylcarnitine supplementation on the body carnitine pool, skeletal muscle composition, and physical performance in mice

  • Réjane Morand
  • Jamal Bouitbir
  • Andrea Felser
  • Jürgen Hench
  • Christoph Handschin
  • Stephan Frank
  • Stephan Krähenbühl
Original Contribution

Abstract

Purpose

Pharmacokinetics and effects on skeletal muscle and physical performance of oral acetylcarnitine and propionylcarnitine are not well characterized. We therefore investigated the influence of oral acetylcarnitine, propionylcarnitine, and carnitine on body carnitine homeostasis, energy metabolism, and physical performance in mice and compared the findings to non-supplemented control animals.

Methods

Mice were supplemented orally with 2 mmol/kg/day carnitine, acetylcarnitine, or propionylcarnitine for 4 weeks and studied either at rest or after exhaustive exercise.

Results

In the supplemented groups, total plasma and urine carnitine concentrations were significantly higher than in the control group receiving no carnitine, whereas the skeletal muscle carnitine content remained unchanged. The supplemented acylcarnitines were hydrolyzed in intestine and liver and reached the systemic circulation as carnitine. Bioavailability of carnitine and acylcarnitines, determined as the urinary excretion of total carnitine, was in the range of 19 %. Skeletal muscle morphology, including fiber-type composition, was not affected, and oxygen consumption by soleus or gastrocnemius fibers was not different between the groups. Supplementation with carnitine or acylcarnitines had no significant impact on the running capacity, but was associated with lower plasma lactate levels and a higher glycogen content in white skeletal muscle after exhaustive exercise.

Conclusions

Oral supplementation of carnitine, acetylcarnitine, or propionylcarnitine in mice is associated with increased plasma and urine total carnitine concentrations, but does not affect the skeletal muscle carnitine content. Despite better preservation of skeletal muscle glycogen and lower plasma lactate levels, physical performance was not improved by carnitine or acylcarnitine supplementation.

Keywords

Carnitine and short-chain acylcarnitines Bioavailability Muscle composition and metabolism Physical performance 

Notes

Acknowledgments

We would like to thank Markus Beer and Kristoffer Svensson for their kind assistance concerning the treadmill experiments. SK was supported by a grant from the Swiss National Science Foundation (SNF 31003A-132992).

Conflict of interest

None of the authors reports any conflict of interest regarding this study.

Supplementary material

394_2013_631_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 16 kb)

References

  1. 1.
    Arenas J, Huertas R, Campos Y, Diaz AE, Villalon JM, Vilas E (1994) Effects of L-carnitine on the pyruvate dehydrogenase complex and carnitine palmitoyl transferase activities in muscle of endurance athletes. FEBS Lett 341:91–93CrossRefGoogle Scholar
  2. 2.
    Bacurau RF, Navarro F, Bassit RA, Meneguello MO, Santos RV, Almeida AL, Costa Rosa LF (2003) Does exercise training interfere with the effects of L-carnitine supplementation? Nutrition 19:337–341CrossRefGoogle Scholar
  3. 3.
    Bancroft J (2008) Theory and practice of histological techniques. Churchill Livingstone, EdinburghGoogle Scholar
  4. 4.
    Barnett C, Costill DL, Vukovich MD, Cole KJ, Goodpaster BH, Trappe SW, Fink WJ (1994) Effect of L-carnitine supplementation on muscle and blood carnitine content and lactate accumulation during high-intensity sprint cycling. Int J Sport Nutr 4:280–288Google Scholar
  5. 5.
    Berardi S, Stieger B, Hagenbuch B, Carafoli E, Krahenbuhl S (2000) Characterization of L-carnitine transport into rat skeletal muscle plasma membrane vesicles. Eur J Biochem 267:1985–1994CrossRefGoogle Scholar
  6. 6.
    Brass EP (2004) Carnitine and sports medicine: use or abuse? Ann N Y Acad Sci 1033:67–78. doi: 10.1196/annals.1320.006 CrossRefGoogle Scholar
  7. 7.
    Brass EP (2000) Supplemental carnitine and exercise. Am J Clin Nutr 72:618S–623SGoogle Scholar
  8. 8.
    Brass EP, Hoppel CL (1980) Relationship between acid-soluble carnitine and coenzyme A pools in vivo. Biochem J 190:495–504Google Scholar
  9. 9.
    Brass EP, Scarrow AM, Ruff LJ, Masterson KA, Van Lunteren E (1993) Carnitine delays rat skeletal muscle fatigue in vitro. J Appl Physiol 75:1595–1600Google Scholar
  10. 10.
    Cao Y, Wang YX, Liu CJ, Wang LX, Han ZW, Wang CB (2009) Comparison of pharmacokinetics of L-carnitine, acetyl-L-carnitine and propionyl-L-carnitine after single oral administration of L-carnitine in healthy volunteers. Clin Invest Med 32:E13–E19Google Scholar
  11. 11.
    Cassano P, Fluck M, Giovanna Sciancalepore A, Pesce V, Calvani M, Hoppeler H, Cantatore P, Gadaleta MN (2010) Muscle unloading potentiates the effects of acetyl-L-carnitine on the slow oxidative muscle phenotype. BioFactors 36:70–77. doi: 10.1002/biof.74 Google Scholar
  12. 12.
    Couturier A, Ringseis R, Mooren FC, Kruger K, Most E, Eder K (2013) Carnitine supplementation to obese Zucker rats prevents obesity-induced type II to type I muscle fiber transition and favors an oxidative phenotype of skeletal muscle. Nutr Metab 10:48. doi: 10.1186/1743-7075-10-48 CrossRefGoogle Scholar
  13. 13.
    Davenport RJ, Law MP, Pike VW, Osman S, Poole KG (1995) Propionyl-L-carnitine: labelling in the N-methyl position with carbon-11 and pharmacokinetic studies in rats. Nucl Med Biol 22:699–709CrossRefGoogle Scholar
  14. 14.
    Dubelaar ML, Lucas CM, Hulsmann WC (1991) Acute effect of L-carnitine on skeletal muscle force tests in dogs. Am J Physiol 260:E189–E193Google Scholar
  15. 15.
    Eder K, Felgner J, Becker K, Kluge H (2005) Free and total carnitine concentrations in pig plasma after oral ingestion of various L-carnitine compounds. Int J Vitam Nutr Res 75:3–9CrossRefGoogle Scholar
  16. 16.
    Friolet R, Hoppeler H, Krahenbuhl S (1994) Relationship between the coenzyme A and the carnitine pools in human skeletal muscle at rest and after exhaustive exercise under normoxic and acutely hypoxic conditions. J Clin Invest 94:1490–1495CrossRefGoogle Scholar
  17. 17.
    Fritz IB (1955) The effects of muscle extracts on the oxidation of palmitic acid by liver slices and homogenates. Acta Physiol Scand 34:367–385CrossRefGoogle Scholar
  18. 18.
    Harris RC, Hultman E, Nordesjo LO (1974) Glycogen, glycolytic intermediates and high-energy phosphates determined in biopsy samples of musculus quadriceps femoris of man at rest. Methods and variance of values. Scand J Clin Lab Invest 33:109–120CrossRefGoogle Scholar
  19. 19.
    Huertas R, Campos Y, Diaz E, Esteban J, Vechietti L, Montanari G, D’Iddio S, Corsi M, Arenas J (1992) Respiratory chain enzymes in muscle of endurance athletes: effect of L-carnitine. Biochem Biophys Res Commun 188:102–107CrossRefGoogle Scholar
  20. 20.
    Jacobs PL, Goldstein ER, Blackburn W, Orem I, Hughes JJ (2009) Glycine propionyl-L-carnitine produces enhanced anaerobic work capacity with reduced lactate accumulation in resistance trained males. J Int Soc Sports Nutr 6:9. doi: 10.1186/1550-2783-6-9 CrossRefGoogle Scholar
  21. 21.
    Keller J, Couturier A, Haferkamp M, Most E, Eder K (2013) Supplementation of carnitine leads to an activation of the IGF-1/PI3 K/Akt signalling pathway and down regulates the E3 ligase MuRF1 in skeletal muscle of rats. Nutr Metab 10:28. doi: 10.1186/1743-7075-10-28 CrossRefGoogle Scholar
  22. 22.
    Krahenbuhl S, Brass EP, Hoppel CL (2000) Decreased carnitine biosynthesis in rats with secondary biliary cirrhosis. Hepatology 31:1217–1223CrossRefGoogle Scholar
  23. 23.
    Kuznetsov AV, Veksler V, Gellerich FN, Saks V, Margreiter R, Kunz WS (2008) Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc 3:965–976. doi: 10.1038/nprot.2008.61 CrossRefGoogle Scholar
  24. 24.
    Lambert BD, Dobson CM, Cherry NM, Sanderford MG (2009) Chemical form of dietary L-carnitine affects plasma but not tissue carnitine concentrations in male Sprague-Dawley rats. J Anim Physiol Anim Nutr 93:174–180. doi: 10.1111/j.1439-0396.2007.00802.x CrossRefGoogle Scholar
  25. 25.
    Marciani P, Lindi C, Marzo A, Arrigoni Martelli E, Cardace G, Esposito G (1991) L-carnitine and carnitine ester transport in the rat small intestine. Pharmacol Res 23:157–162CrossRefGoogle Scholar
  26. 26.
    Mingorance C, Duluc L, Chalopin M, Simard G, Ducluzeau PH, Herrera MD, Alvarez de Sotomayor M, Andriantsitohaina R (2012) Propionyl-L-carnitine corrects metabolic and cardiovascular alterations in diet-induced obese mice and improves liver respiratory chain activity. PLoS ONE 7:e34268. doi: 10.1371/journal.pone.0034268 CrossRefGoogle Scholar
  27. 27.
    Minkler PE, Stoll MS, Ingalls ST, Yang S, Kerner J, Hoppel CL (2008) Quantification of carnitine and acylcarnitines in biological matrices by HPLC electrospray ionization-mass spectrometry. Clin Chem 54:1451–1462. doi: 10.1373/clinchem.2007.099226 CrossRefGoogle Scholar
  28. 28.
    Morand R, Todesco L, Donzelli M, Fischer-Barnicol D, Mullen PJ, Krahenbuhl S (2012) Effect of short- and long-term treatment with valproate on carnitine homeostasis in humans. Ther Drug Monit 34:406–414. doi: 10.1097/FTD.0b013e3182608e2f CrossRefGoogle Scholar
  29. 29.
    Negrao CE, Ji LL, Schauer JE, Nagle FJ, Lardy HA (1987) Carnitine supplementation and depletion: tissue carnitines and enzymes in fatty acid oxidation. J Appl Physiol (Bethesda, Md.: 1985) 63:315–321Google Scholar
  30. 30.
    Olsen C (1971) An enzymatic fluorimetric micromethod for the determination of acetoacetate, -hydroxybutyrate, pyruvate and lactate. Clin Chim Acta 33:293–300CrossRefGoogle Scholar
  31. 31.
    Oyono-Enguelle S, Freund H, Ott C, Gartner M, Heitz A, Marbach J, Maccari F, Frey A, Bigot H, Bach AC (1988) Prolonged submaximal exercise and L-carnitine in humans. Eur J Appl Physiol 58:53–61CrossRefGoogle Scholar
  32. 32.
    Parnetti L, Gaiti A, Mecocci P, Cadini D, Senin U (1992) Pharmacokinetics of IV and oral acetyl-L-carnitine in a multiple dose regimen in patients with senile dementia of Alzheimer type. Eur J Clin Pharmacol 42:89–93CrossRefGoogle Scholar
  33. 33.
    Pesta D, Gnaiger E (2012) High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol 810:25–58. doi: 10.1007/978-1-61779-382-0_3 CrossRefGoogle Scholar
  34. 34.
    Primassin S, Ter Veld F, Mayatepek E, Spiekerkoetter U (2008) Carnitine supplementation induces acylcarnitine production in tissues of very long-chain acyl-CoA dehydrogenase-deficient mice, without replenishing low free carnitine. Pediatr Res 63:632–637. doi: 10.1203/PDR.0b013e31816ff6f0 CrossRefGoogle Scholar
  35. 35.
    Rasband WS (1997) ImageJ. U.S National Institutes of Health, BethesdaGoogle Scholar
  36. 36.
    Rebouche CJ (2004) Kinetics, pharmacokinetics, and regulation of L-carnitine and acetyl-L-carnitine metabolism. Ann N Y Acad Sci 1033:30–41. doi: 10.1196/annals.1320.003 CrossRefGoogle Scholar
  37. 37.
    Reuter SE, Evans AM (2012) Carnitine and acylcarnitines: pharmacokinetic, pharmacological and clinical aspects. Clin Pharmacokinet 51:553–572. doi: 10.2165/11633940 CrossRefGoogle Scholar
  38. 38.
    Spaniol M, Brooks H, Auer L, Zimmermann A, Solioz M, Stieger B, Krahenbuhl S (2001) Development and characterization of an animal model of carnitine deficiency. Eur J Biochem 268:1876–1887CrossRefGoogle Scholar
  39. 39.
    Stephens FB, Constantin-Teodosiu D, Laithwaite D, Simpson EJ, Greenhaff PL (2006) Insulin stimulates L-carnitine accumulation in human skeletal muscle. FASEB J 20:377–379. doi: 10.1096/fj.05-4985fje Google Scholar
  40. 40.
    Tanaka Y, Sasaki R, Fukui F, Waki H, Kawabata T, Okazaki M, Hasegawa K, Ando S (2004) Acetyl-L-carnitine supplementation restores decreased tissue carnitine levels and impaired lipid metabolism in aged rats. J Lipid Res 45:729–735. doi: 10.1194/jlr.M300425-JLR200 CrossRefGoogle Scholar
  41. 41.
    Vernez L, Dickenmann M, Steiger J, Wenk M, Krahenbuhl S (2006) Effect of L-carnitine on the kinetics of carnitine, acylcarnitines and butyrobetaine in long-term haemodialysis. Nephrol Dial Transplant 21:450–458CrossRefGoogle Scholar
  42. 42.
    Volek JS, Kraemer WJ, Rubin MR, Gomez AL, Ratamess NA, Gaynor P (2002) L-Carnitine L-tartrate supplementation favorably affects markers of recovery from exercise stress. Am J physiol Endocrinol Metab 282:E474–E482. doi: 10.1152/ajpendo.00277.2001 Google Scholar
  43. 43.
    Wachter S, Vogt M, Kreis R, Boesch C, Bigler P, Hoppeler H, Krahenbuhl S (2002) Long-term administration of L-carnitine to humans: effect on skeletal muscle carnitine content and physical performance. Clin Chim Acta 318:51–61CrossRefGoogle Scholar
  44. 44.
    Wagner CC, Rusca A, Kletter K, Tschurlovits M, Pace S, Longo A, Pedrani M, Villa R, Frimonti E, Muller M, Brunner M (2011) Plasma pharmacokinetics and gastrointestinal transit of a new propionyl-L-carnitine controlled release formulation. Xenobiotica 41:988–995. doi: 10.3109/00498254.2011.597454 CrossRefGoogle Scholar
  45. 45.
    Wall BT, Stephens FB, Constantin-Teodosiu D, Marimuthu K, Macdonald IA, Greenhaff PL (2011) Chronic oral ingestion of L-carnitine and carbohydrate increases muscle carnitine content and alters muscle fuel metabolism during exercise in humans. J Physiol 589:963–973. doi: 10.1113/jphysiol.2010.201343 CrossRefGoogle Scholar
  46. 46.
    Wen G, Ringseis R, Eder K (2010) Mouse OCTN2 is directly regulated by peroxisome proliferator-activated receptor alpha (PPARalpha) via a PPRE located in the first intron. Biochem Pharmacol 79:768–776. doi: 10.1016/j.bcp.2009.10.002 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Réjane Morand
    • 1
    • 2
  • Jamal Bouitbir
    • 1
    • 2
  • Andrea Felser
    • 1
    • 2
  • Jürgen Hench
    • 3
  • Christoph Handschin
    • 4
  • Stephan Frank
    • 3
  • Stephan Krähenbühl
    • 1
    • 2
  1. 1.Clinical Pharmacology and ToxicologyUniversity Hospital BaselBaselSwitzerland
  2. 2.Department of BiomedicineUniversity of BaselBaselSwitzerland
  3. 3.Division of Neuropathology, Institute of PathologyUniversity Hospital BaselBaselSwitzerland
  4. 4.Division of Pharmacology/Neurobiology, BiozentrumUniversity of BaselBaselSwitzerland

Personalised recommendations