European Journal of Nutrition

, Volume 53, Issue 3, pp 973–980 | Cite as

Red grape berry-cultured cells reduce blood pressure in rats with metabolic-like syndrome

  • A. Leibowitz
  • Z. Faltin
  • A. Perl
  • Y. Eshdat
  • Y. Hagay
  • E. Peleg
  • E. Grossman
Original Contribution

Abstract

Purpose

Cumulative evidence suggests that moderate red wine consumption protects the cardiovascular system. The effect of cultured cells derived from red grape berry (RGC) on blood pressure (BP) has not been investigated. We therefore studied the antihypertensive effects of oral consumption of RGC in experimental rat model of metabolic-like syndrome and assessed its effect on human umbilical vein endothelial cells (HUVECs).

Methods

Forty male Sprague–Dawley rats were fed for 5 weeks with either a high fructose diet (HFD) (n = 10) or HFD supplemented, during the last 2 weeks, with different doses (200, 400 and 800 mg/kg/day) of RGC suspended in their food (n = 30). BP, plasma triglycerides, insulin and adiponectin levels were measured at the beginning and after 3 and 5 weeks of diet. RGC effect on vasodilatation was evaluated by its ability to affect endothelin-1 (ET-1) production and endothelial nitric oxide synthase (eNOS) expression in HUVECs.

Results

BP, plasma triglycerides, insulin and adiponectin increased significantly in rats fed with a HFD. The increase in BP, plasma triglycerides and insulin was attenuated by RGC supplementation. Incubation of HUVECs with RGC demonstrated a concentration-dependent inhibition of ET-1 secretion and increase in the level of eNOS, signaling a positive effect of RGC on vasodilatation.

Conclusion

In rats with metabolic-like syndrome, RGC decreased BP and improved metabolic parameters. These beneficial effects may be mediated by the cell constituents, highly rich with polyphenols and resveratrol, reside in their natural state.

Keywords

Rats Metabolic syndrome Blood pressure Red grape-cultured cell Endothelin-1 Endothelial NO synthase 

Notes

Conflict of interest

Dr. Avshhalom Leibowitz, Dr. Edna Peleg and Dr. Ehud Grossman received a research grant from Fruitura (formly Hi-Nutra) Bioscience Ltd. Rehovot, Israel.

References

  1. 1.
    Vidavalur R, Otani H, Singal PK, Maulik N (2006) Significance of wine and resveratrol in cardiovascular disease: French paradox revisited. Exp Clin Cardiol 11:217–225Google Scholar
  2. 2.
    Leifert WR, Abeywardena MY (2008) Cardioprotective actions of grape polyphenols. Nutr Res 28:729–737CrossRefGoogle Scholar
  3. 3.
    Rahman I, Biswas SK, Kirkham PA (2006) Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol 72:1439–1452CrossRefGoogle Scholar
  4. 4.
    Schini-Kerth VB, Auger C, Kim JH, Etienne-Selloum N, Chataigneau T (2010) Nutritional improvement of the endothelial control of vascular tone by polyphenols: role of NO and EDHF. Pflugers Arch 459:853–862CrossRefGoogle Scholar
  5. 5.
    Corder R, Douthwaite JA, Lees DM, Khan NQ, Viseu Dos Santos AC, Wood EG, Carrier MJ (2001) Endothelin-1 synthesis reduced by red wine. Nature 414:863–864CrossRefGoogle Scholar
  6. 6.
    Madeira SV, Auger C, Anselm E, Chataigneau M, Chataigneau T, Soares de Moura R, Schini-Kerth VB (2009) eNOS activation induced by a polyphenol-rich grape skin extract in porcine coronary arteries. J Vasc Res 46:406–416CrossRefGoogle Scholar
  7. 7.
    de Lange DW, Verhoef S, Gorter G, Kraaijenhagen RJ, van de Wiel A, Akkerman JW (2007) Polyphenolic grape extract inhibits platelet activation through PECAM-1: an explanation for the French paradox. Alcohol Clin Exp Res 31:1308–1314CrossRefGoogle Scholar
  8. 8.
    de Lange DW, Scholman WL, Kraaijenhagen RJ, Akkerman JW, van de Wiel A (2004) Alcohol and polyphenolic grape extract inhibit platelet adhesion in flowing blood. Eur J Clin Invest 34:818–824CrossRefGoogle Scholar
  9. 9.
    Bhatt SR, Lokhandwala MF, Banday AA (2011) Resveratrol prevents endothelial nitric oxide synthase uncoupling and attenuates development of hypertension in spontaneously hypertensive rats. Eur J Pharmacol 667:258–264CrossRefGoogle Scholar
  10. 10.
    Soares De Moura R, Costa Viana FS, Souza MA, Kovary K, Guedes DC, Oliveira EP, Rubenich LM, Carvalho LC, Oliveira RM, Tano T, Gusmao Correia ML (2002) Antihypertensive, vasodilator and antioxidant effects of a vinifera grape skin extract. J Pharm Pharmacol 54:1515–1520CrossRefGoogle Scholar
  11. 11.
    Chacon MR, Ceperuelo-Mallafre V, Maymo-Masip E, Mateo-Sanz JM, Arola L, Guitierrez C, Fernandez-Real JM, Ardevol A, Simon I, Vendrell J (2009) Grape-seed procyanidins modulate inflammation on human differentiated adipocytes in vitro. Cytokine 47:137–142CrossRefGoogle Scholar
  12. 12.
    Dolinsky VW, Dyck JR (2011) Calorie restriction and resveratrol in cardiovascular health and disease. Biochim Biophys Acta 1812:1477–1489CrossRefGoogle Scholar
  13. 13.
    Oron-Herman M, Kamari Y, Grossman E, Yeger G, Peleg E, Shabtay Z, Shamiss A, Sharabi Y (2008) Metabolic syndrome comparison of the two commonly used animal models. Am J Hypertens 21:1018–1022CrossRefGoogle Scholar
  14. 14.
    Sharabi Y, Oron-Herman M, Kamari Y, Avni I, Peleg E, Shabtay Z, Grossman E, Shamiss A (2007) Effect of PPAR-gamma agonist on adiponectin levels in the metabolic syndrome: lessons from the high fructose fed rat model. Am J Hypertens 20:206–210CrossRefGoogle Scholar
  15. 15.
    Delbosc S, Paizanis E, Magous R, Araiz C, Dimo T, Cristol JP, Cros G, Azay J (2005) Involvement of oxidative stress and NADPH oxidase activation in the development of cardiovascular complications in a model of insulin resistance, the fructose-fed rat. Atherosclerosis 179:43–49CrossRefGoogle Scholar
  16. 16.
    Bagul PK, Middela H, Matapally S, Padiya R, Bastia T, Madhusudana K, Reddy BR, Chakravarty S, Banerjee SK (2012) Attenuation of insulin resistance, metabolic syndrome and hepatic oxidative stress by resveratrol in fructose-fed rats. Pharmacol Res 66:260–268CrossRefGoogle Scholar
  17. 17.
    Kojima H, Sakurai K, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y, Nagano T (1998) Development of a fluorescent indicator for nitric oxide based on the fluorescein chromophore. Chem Pharm Bull (Tokyo) 46:373–375CrossRefGoogle Scholar
  18. 18.
    Page B, Page M, Noel C (1993) A new fluorometric assay for cytotoxicity measurements in vitro. Int J Oncol 3:473–476Google Scholar
  19. 19.
    Hazebrouck S, Camoin L, Faltin Z, Strosberg AD, Eshdat Y (2000) Substituting selenocysteine for catalytic cysteine 41 enhances enzymatic activity of plant phospholipid hydroperoxide glutathione peroxidase expressed in Escherichia coli. J Biol Chem 275:28715–28721CrossRefGoogle Scholar
  20. 20.
    Wallerath T, Deckert G, Ternes T, Anderson H, Li H, Witte K, Forstermann U (2002) Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation 106:1652–1658CrossRefGoogle Scholar
  21. 21.
    Mulvihill EE, Huff MW (2010) Antiatherogenic properties of flavonoids: implications for cardiovascular health. Can J Cardiol 26(Suppl A):17A–21ACrossRefGoogle Scholar
  22. 22.
    Aubin MC, Lajoie C, Clement R, Gosselin H, Calderone A, Perrault LP (2008) Female rats fed a high-fat diet were associated with vascular dysfunction and cardiac fibrosis in the absence of overt obesity and hyperlipidemia: therapeutic potential of resveratrol. J Pharmacol Exp Ther 325:961–968CrossRefGoogle Scholar
  23. 23.
    Chander V, Chopra K (2006) Possible role of nitric oxide in the protective effect of resveratrol in 5/6th nephrectomized rats. J Surg Res 133:129–135CrossRefGoogle Scholar
  24. 24.
    Inanaga K, Ichiki T, Matsuura H, Miyazaki R, Hashimoto T, Takeda K, Sunagawa K (2009) Resveratrol attenuates angiotensin II-induced interleukin-6 expression and perivascular fibrosis. Hypertens Res 32:466–471CrossRefGoogle Scholar
  25. 25.
    Miatello R, Vazquez M, Renna N, Cruzado M, Zumino AP, Risler N (2005) Chronic administration of resveratrol prevents biochemical cardiovascular changes in fructose-fed rats. Am J Hypertens 18:864–870CrossRefGoogle Scholar
  26. 26.
    Rivera L, Moron R, Zarzuelo A, Galisteo M (2009) Long-term resveratrol administration reduces metabolic disturbances and lowers blood pressure in obese Zucker rats. Biochem Pharmacol 77:1053–1063CrossRefGoogle Scholar
  27. 27.
    Thandapilly SJ, Wojciechowski P, Behbahani J, Louis XL, Yu L, Juric D, Kopilas MA, Anderson HD, Netticadan T (2010) Resveratrol prevents the development of pathological cardiac hypertrophy and contractile dysfunction in the SHR without lowering blood pressure. Am J Hypertens 23:192–196CrossRefGoogle Scholar
  28. 28.
    Robich MP, Chu LM, Chaudray M, Nezafat R, Han Y, Clements RT, Laham RJ, Manning WJ, Coady MA, Sellke FW (2010) Anti-angiogenic effect of high-dose resveratrol in a swine model of metabolic syndrome. Surgery 148:453–462CrossRefGoogle Scholar
  29. 29.
    Wallerath T, Poleo D, Li H, Forstermann U (2003) Red wine increases the expression of human endothelial nitric oxide synthase: a mechanism that may contribute to its beneficial cardiovascular effects. J Am Coll Cardiol 41:471–478CrossRefGoogle Scholar
  30. 30.
    Mikstacka R, Rimando AM, Ignatowicz E (2010) Antioxidant effect of trans-resveratrol, pterostilbene, quercetin and their combinations in human erythrocytes in vitro. Plant Foods Hum Nutr 65:57–63CrossRefGoogle Scholar
  31. 31.
    Kamari Y, Grossman E, Oron-Herman M, Peleg E, Shabtay Z, Shamiss A, Sharabi Y (2007) Metabolic stress with a high carbohydrate diet increases adiponectin levels. Horm Metab Res 39:384–388CrossRefGoogle Scholar
  32. 32.
    Kamari Y, Harari A, Shaish A, Peleg E, Sharabi Y, Harats D, Grossman E (2008) Effect of telmisartan, angiotensin II receptor antagonist, on metabolic profile in fructose-induced hypertensive, hyperinsulinemic, hyperlipidemic rats. Hypertens Res 31:135–140CrossRefGoogle Scholar
  33. 33.
    Grossman E (2008) Does increased oxidative stress cause hypertension? Diabetes Care 31(Suppl 2):S185–S189CrossRefGoogle Scholar
  34. 34.
    Akpaffiong MJ, Taylor AA (1998) Antihypertensive and vasodilator actions of antioxidants in spontaneously hypertensive rats. Am J Hypertens 11:1450–1460CrossRefGoogle Scholar
  35. 35.
    Virdis A, Neves MF, Amiri F, Touyz RM, Schiffrin EL (2004) Role of NAD(P)H oxidase on vascular alterations in angiotensin II-infused mice. J Hypertens 22:535–542CrossRefGoogle Scholar
  36. 36.
    Vitseva O, Varghese S, Chakrabarti S, Folts JD, Freedman JE (2005) Grape seed and skin extracts inhibit platelet function and release of reactive oxygen intermediates. J Cardiovasc Pharmacol 46:445–451CrossRefGoogle Scholar
  37. 37.
    Yamakoshi J, Kataoka S, Koga T, Ariga T (1999) Proanthocyanidin-rich extract from grape seeds attenuates the development of aortic atherosclerosis in cholesterol-fed rabbits. Atherosclerosis 142:139–149CrossRefGoogle Scholar
  38. 38.
    Leikert JF, Rathel TR, Wohlfart P, Cheynier V, Vollmar AM, Dirsch VM (2002) Red wine polyphenols enhance endothelial nitric oxide synthase expression and subsequent nitric oxide release from endothelial cells. Circulation 106:1614–1617CrossRefGoogle Scholar
  39. 39.
    Nicholson SK, Tucker GA, Brameld JM (2008) Effects of dietary polyphenols on gene expression in human vascular endothelial cells. Proc Nutr Soc 67:42–47CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. Leibowitz
    • 1
    • 2
  • Z. Faltin
    • 3
  • A. Perl
    • 3
  • Y. Eshdat
    • 3
  • Y. Hagay
    • 4
  • E. Peleg
    • 1
    • 2
  • E. Grossman
    • 1
    • 2
  1. 1.Internal Medicine D and the Hypertension UnitThe Chaim Sheba Medical CenterTel-HashomerIsrael
  2. 2.Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
  3. 3.Institute of Plant Science, Agricultural Research OrganizationThe Volcani CenterBet DaganIsrael
  4. 4.Fruitura BioscienceRehovotIsrael

Personalised recommendations