Advertisement

European Journal of Nutrition

, Volume 53, Issue 2, pp 351–365 | Cite as

Influencing factors on iodine content of cow milk

  • Gerhard Flachowsky
  • Katrin Franke
  • Ulrich MeyerEmail author
  • Matthias Leiterer
  • Friedrich Schöne
Review

Abstract

Purpose

Iodine is an essential trace element for humans and animals, and it is incorporated into the thyroid hormones such as thyroxine and triiodothyronine, which have multiple functions in energy metabolism and growth, but also as transmitter of nervous stimuli and as an important factor for brain development. Because of the small range between iodine requirements and the upper level for humans (between 1:2.5 and 3), the requirements should be met, but excesses should be avoided. One of the most important iodine sources for humans is milk of ruminants. Therefore, various influencing factors on the iodine content of milk of ruminants should be analyzed in the paper.

Results

The iodine content of milk depends on many factors, such as iodine content and level of iodine supplementation of feed, iodine source, iodine antagonists such as glucosinolates in the feed, farm management, teat dipping with iodine-containing substances, and milk processing in the dairy. The effects of some factors on the iodine content of milk are demonstrated and discussed. Feed iodine supplementation has the main effect on milk iodine. However, the iodine content of milk may vary considerably depending on many other influencing factors.

Conclusions

As a consequence of preventive consumer protection, the European Food Safety Authority proposed a reduction in the iodine upper level for lactating ruminants from 5 to 2 mg/kg complete feed.

Keywords

Iodine Milk Iodine sources Iodine levels Antagonists Teat dipping 

Notes

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Küpper FC, Feiters MC, Olofsson B, Kaiho T, Yanagida S, Zimmermann MB, Carpenter LJ, Luther GW, Lu ZL, Jonsson M, Kloo L (2011) Commemorating two centuries of iodine research: an interdisciplinary overview of current research. Angew Chem Int Ed 50(49):11598–11620. doi: 10.1002/anie.201100028 Google Scholar
  2. 2.
    McDowell LR (2003) Minerals in animal and human nutrition. Minerals in animal and human nutrition, 2nd edn. Elsevier Science BV, AmsterdamGoogle Scholar
  3. 3.
    Preedy VR, Burrow GN, Watson R et al (2009) Comprehensive handbook of iodine: nutritional, biochemical, pathological and therapeutic aspects. Comprehensive handbook of iodine: nutritional, biochemical, pathological and therapeutic aspects. Academic Press, AmsterdamGoogle Scholar
  4. 4.
    Suttle N (2010) Mineral nutrition of livestock. Mineral nutrition of livestock, 4th edn. doi: 10.1079/9781845934729.0000
  5. 5.
    Cavalieri RR (1997) Iodine metabolism and thyroid physiology: current concepts. Thyroid 7(2):177–181. doi: 10.1089/thy.1997.7.177 Google Scholar
  6. 6.
    Vandecasteele CM, Van Hees M, Hardeman F, Voigt G, Howard BJ (2000) The true absorption of 131I, and its transfer to milk in cows given different stable iodine diets. J Environ Radioact 47(3):301–317Google Scholar
  7. 7.
    GfE (1995) Empfehlungen zur Energie und Nährstoffversorgung der Mastrinder, vol Nr. 6. Energie- und Nährstoffbedarf landwirtschaftlicher Nutztiere. DLG-Verlag, Frankfurt am MainGoogle Scholar
  8. 8.
    GfE (1999) Empfehlungen zur Energie und Nährstoffversorgung der Legehennen und Masthühner (Broiler), vol Nr. 7. Energie- und Nährstoffbedarf landwirtschaftlicher Nutztiere. DLG-Verlag, Frankfurt am MainGoogle Scholar
  9. 9.
    GfE (2001) Empfehlungen zur Energie und Nährstoffversorgung der Milchkühe und Aufzuchtrinder, vol Nr. 8. Energie- und Nährstoffbedarf landwirtschaftlicher Nutztiere. DLG-Verlag, Frankfurt am MainGoogle Scholar
  10. 10.
    GfE (2006) Empfehlungen zur Energie und Nährstoffversorgung von Schweinen, vol Nr. 10. Energie- und Nährstoffbedarf landwirtschaftlicher Nutztiere. DLG-Verlag, Frankfurt am MainGoogle Scholar
  11. 11.
    NRC (1994) Nutrient requirements of poultry: ninth revised edition, 1994. The National Academies Press, WashingtonGoogle Scholar
  12. 12.
    NRC (1998) Nutrient requirements of swine: 10th revised edition, 1998. The National Academies Press, WashingtonGoogle Scholar
  13. 13.
    NRC (2001) Nutrient requirements of dairy cattle: seventh revised edition, 2001. The National Academies Press, WashingtonGoogle Scholar
  14. 14.
    NRC (2007) nutrient requirements of small ruminants: sheep, goats, cervids, and new world camelids. The National Academies Press, WashingtonGoogle Scholar
  15. 15.
    Andersson M, Karumbunathan V, Zimmermann MB (2012) Global iodine status in 2011 and trends over the past decade. J Nutr 142(4):744–750. doi: 10.3945/jn.111.149393 Google Scholar
  16. 16.
    de Benoist B, McLean E, Andersson M, Rogers L (2008) Iodine deficiency in 2007: global progress since 2003. Food Nutr Bull 29(3):195–202Google Scholar
  17. 17.
    Zimmermann MB (2009) Iodine deficiency. Endocr Rev 30(4):376–408. doi: 10.1210/er.2009-0011 Google Scholar
  18. 18.
    Zimmermann MB, Andersson M (2011) Prevalence of iodine deficiency in Europe in 2010. Ann Endocrinol (Paris) 72(2):164–166. doi: 10.1016/j.ando.2011.03.023 Google Scholar
  19. 19.
    Zimmermann MB, Andersson M (2012) Assessment of iodine nutrition in populations: past, present, and future. Nutr Rev 70(10):553–570Google Scholar
  20. 20.
    WHO, ICCIDD, UNICEF (2001) Assessment of iodine deficiency disorders and monitoring their elimination. A guide for programme managers, 2nd edn, WHO reference number: WHO/NHD/01.1Google Scholar
  21. 21.
    Bath SC, Button S, Rayman MP (2012) Iodine concentration of organic and conventional milk: implications for iodine intake. Br J Nutr 107(7):935–940. doi: 10.1017/s0007114511003059 Google Scholar
  22. 22.
    Raverot V, Bournaud C, Sassolas G, Orgiazzi J, Claustrat F, Gaucherand P, Mellier G, Claustrat B, Borson-Chazot F, Zimmermann M (2012) Pregnant French women living in the Lyon area are iodine deficient and have elevated serum thyroglobulin concentrations. Thyroid 22(5):522–528. doi: 10.1089/thy.2011.0184 Google Scholar
  23. 23.
    Roman Vinas B, Ribas Barba L, Ngo J, Gurinovic M, Novakovic R, Cavelaars A, de Groot LCPGM, Van’t Veer P, Matthys C, Serra Majem L (2011) Projected prevalence of inadequate nutrient intakes in Europe. Ann Nutr Metab 59(2–4):84–95. doi: 10.1159/000332762 Google Scholar
  24. 24.
    BfR (2004) Nutzen und Risiken der Jodprophylaxe in DeutschlandGoogle Scholar
  25. 25.
    Graßmann B (2006) On the setting of maximum and minimum amounts for vitamins and minerals in foodstuffs. Ernährungsumschau 53:336–343Google Scholar
  26. 26.
    Andersson M, de Benoist B, Rogers L (2010) Epidemiology of iodine deficiency: salt iodisation and iodine status. Best Pract Res Clin Endocrinol Metab 24(1):1–11. doi: 10.1016/j.beem.2009.08.005 Google Scholar
  27. 27.
    van der Haar F, Gerasimov G, Tyler VQ, Timmer A (2011) Universal salt iodization in the Central and Eastern Europe, Commonwealth of Independent States (CEE/CIS) Region during the decade 2000–09: experiences, achievements, and lessons learned. Food Nutr Bull 32(4):S175–S294Google Scholar
  28. 28.
    Franke F (2009) Effect of various iodine supplementations and species on the iodine transfer into milk and on serum, urinal and faecal iodine of dairy cows fed rations varying in the glucosinolate content. PhD ThesisGoogle Scholar
  29. 29.
    Schöne F, Rajendram R (2009) Chapter 16—iodine in farm animals. In: Preedy VR, Burrow GN, Watson R (eds) Comprehensive handbook of iodine. Academic Press, San Diego, pp 151–170. doi: 10.1016/B978-0-12-374135-6.00016-9
  30. 30.
    Grace ND, Waghorn GC (2005) Impact of iodine supplementation of dairy cows on milk production and iodine concentrations in milk. N Z Vet J 53(1):10–13. doi: 10.1080/00480169.2005.36462 Google Scholar
  31. 31.
    EU (2005) Commission Regulation (EC) No 1459/2005: amending the conditions for authorisation of a number of feed additives belonging to the group of trace elements. Off J Eur Union L233:8–10Google Scholar
  32. 32.
    EFSA (2013) Scientific opinion on the safety and efficacy of iodine compounds (E2) as feed additives for all animal species: calcium iodate anhydrous, based on a dossier submitted by Calibre Europe SPRL/BVBA. EFSA J 11(2):3100Google Scholar
  33. 33.
    IOM, FNB (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. The National Academies Press, WashingtonGoogle Scholar
  34. 34.
    DACH (2000) Referenzwerte für die Nährstoffzufuhr, Deutsche Gesellschaft für Ernährung, Österreichische Gesellschaft für Ernährung, Schweizerische Gesellschaft für Ernährungsforschung, Schweizerische Vereinigung für Ernährung. Umschau/Braus Verlag, Frankfurt am MainGoogle Scholar
  35. 35.
    SCF (2002) Opinion of the Scientific Committee on Food on the tolerable upper intake level of iodine. http://ec.europa.eu/food/fs/sc/scf/out146_en.pdf
  36. 36.
    Azizi F, Hedayati M, Rahmani M, Sheikholeslam R, Allahverdian S, Salarkia N (2005) Reappraisal of the risk of iodine-induced hyperthyroidism: an epidemiological population survey. J Endocrinol Invest 28(1):23–29Google Scholar
  37. 37.
    Zimmermann MB, Ito Y, Hess SY, Fujieda K, Molinari L (2005) High thyroid volume in children with excess dietary iodine intakes. Am J Clin Nutr 81(4):840–844Google Scholar
  38. 38.
    Borkovcova I, Rehurkova I (2001) Study on iodine exposure in foodstuffs (in Czech). Rep Natl Inst Public Health 6:5–8Google Scholar
  39. 39.
    Als C, Haldimann M, Burgi E, Donati F, Gerber H, Zimmerli B (2003) Swiss pilot study of individual seasonal fluctuations of urinary iodine concentration over two years: is age-dependency linked to the major source of dietary iodine? Eur J Clin Nutr 57(5):636–646. doi: 10.1038/sj.ejcn.1601590 Google Scholar
  40. 40.
    Dahl L, Johansson L, Julshamn K, Meltzer HM (2004) The iodine content of Norwegian foods and diets. Public Health Nutr 7(4):569–576. doi: 10.1079/phn2003554 Google Scholar
  41. 41.
    Dahl L, Opsahl JA, Meltzer HM, Julshamn K (2003) Iodine concentration in Norwegian milk and dairy products. Br J Nutr 90(03):679–685. doi: 10.1079/BJN2003921 Google Scholar
  42. 42.
    Guyot H, Saegerman C, Lebreton P, Sandersen C, Rollin F (2009) Epidemiology of trace elements deficiencies in Belgian beef and dairy cattle herds. J Trace Elem Med Biol 23(2):116–123. doi: 10.1016/j.jtemb.2009.02.006 Google Scholar
  43. 43.
    Haldimann M, Alt A, Blanc A, Blondeau K (2005) Iodine content of food groups. J Food Compos Anal 18(6):461–471. doi: 10.1016/j.jfca.2004.06.003 Google Scholar
  44. 44.
    Jahreis G, Hausmann W, Kiessling G, Franke K, Leiterer M (2001) Bioavailability of iodine from normal diets rich in dairy products results of balance studies in women. Exp Clin Endocrinol Diabetes 109(3):163–167. doi: 10.1055/s-2001-14840 Google Scholar
  45. 45.
    Rasmussen LB, Ovesen L, Bulow I, Jorgensen T, Knudsen N, Laurberg P, Perrild H (2002) Dietary iodine intake and urinary iodine excretion in a Danish population: effect of geography, supplements and food choice. Br J Nutr 87(1):61–69Google Scholar
  46. 46.
    Thamm M, Ellert U, Thierfelder W, Liesenkoetter KP, Voelzke H et al (2007) Iodine intake in Germany. Results of iodine monitoring in the German health interview and examination survey for children and adolescents (KiGGS). Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz 50(5–6):744–749. doi: 10.1007/s00103-007-0236-4 Google Scholar
  47. 47.
    Jahreis G, Leiterer M, Fechner A (2007) Jodmangelprophylaxe durch richtige Ernährung. Prävention und Gesundheitsförderung 2(3):179–184. doi: 10.1007/s11553-007-0068-y Google Scholar
  48. 48.
    Johner SA, Thamm M, Nöthlings U, Remer T et al (2012) Iodine status in preschool children and evaluation of major dietary iodine sources: a German experience. Eur J Nutr 1–9. doi: 10.1007/s00394-012-0474-6
  49. 49.
    Johner SA, Guenther ALB, Remer T (2011) Current trends of 24-h urinary iodine excretion in German schoolchildren and the importance of iodised salt in processed foods. Br J Nutr 106(11):1749–1756Google Scholar
  50. 50.
    Franke K, Meyer U, Wagner H, Flachowsky G (2009) Influence of various iodine supplementation levels and two different iodine species on the iodine content of the milk of cows fed rapeseed meal or distillers dried grains with solubles as the protein source. J Dairy Sci 92(9):4514–4523. doi: 10.3168/jds.2009-2027 Google Scholar
  51. 51.
    Franke K, Meyer U, Wagner H, Hoppen HO, Flachowsky G (2009) Effect of various iodine supplementations, rapeseed meal application and two different iodine species on the iodine status and iodine excretion of dairy cows. Livest Sci 125(2–3):223–231. doi: 10.1016/j.livsci.2009.04.012 Google Scholar
  52. 52.
    Schöne F, Leiterer M, Lebzien P, Bemmann D, Spolders M, Flachowsky G (2009) Iodine concentration of milk in a dose–response study with dairy cows and implications for consumer iodine intake. J Trace Elem Med Biol 23(2):84–92. doi: 10.1016/j.jtemb.2009.02.004 Google Scholar
  53. 53.
    Leiterer M, Truckenbrodt D, Franke K (2001) Determination of iodine species in milk using ion chromatographic separation and ICP-MS detection. Eur Food Res Technol 213(2):150–153Google Scholar
  54. 54.
    Bretthauer EW, Mullen AL, Moghissi AA (1972) Milk transfer comparisons of different chemical forms of radioiodine. Health Phys 22(3):257–260Google Scholar
  55. 55.
    Miller JK, Swanson EW, Spalding GE (1975) Iodine absorption, excretion, recycling, and tissue distribution in dairy cow. J Dairy Sci 58(10):1578–1593Google Scholar
  56. 56.
    Flynn A, Power P (1985) Nutritional aspects of minerals in bovine and human milks, vol 3. Developments in dairy chemistry. Elsevier Applied Science Publishers, AmsterdamGoogle Scholar
  57. 57.
    Sanchez LF, Szpunar J (1999) Speciation analysis for iodine in milk by size-exclusion chromatography with inductively coupled plasma mass spectrometric detection (SEC-ICP MS). J Anal At Spectrom 14(11):1697–1702Google Scholar
  58. 58.
    Brezina P, Jelínek J (1990) Chemie a technologie mléka. I. VŠCHT, Praha. Praha, p 128Google Scholar
  59. 59.
    Rudolfova J, Curda L, Koplik R et al (2000) Distribuce jodu mezi hlavni slozky mleka. In Mikroelementy ′00. Paper presented at the Sbornik prednasek XXXIV. Seminare o metodice stanoveni a vyznamu stopovych prvku v biologickem materialu, LibliceGoogle Scholar
  60. 60.
    Comar CL, Wentworth RA, Georgi JR (1963) Thyroidal deposition in man, rat and dog of radioiodine from milk and non-milk sources. Health Phys 9(12):1249–1252Google Scholar
  61. 61.
    EFSA (2005) Opinion of the scientific panel on additives and products or substances used in animal feed on the request from the commission on the use of iodine in feedingstuffs. EFSA J 168(2):1–42Google Scholar
  62. 62.
    Haug A, Harstad OM, Prestløkken E, Salbu B, Schei I, Taugbol O et al (2011) Iodine concentration in Norwegian milk has declined the last decade. In: 62nd Annual meeting of the European federation of Animal Sciences (EAAP), Stavanger, Norway, 2011. Wageningen Academic PublishersGoogle Scholar
  63. 63.
    Köhler M, Fechner A, Leiterer M, Sporl K, Remer T, Schafer U, Jahreis G (2012) Iodine content in milk from German cows and in human milk: new monitoring study. Trace Elem Electrolytes 29(2):119–126. doi: 10.5414/tex01221 Google Scholar
  64. 64.
    Johner SA, von Nida K, Jahreis G, Remer T (2012) Time trends and seasonal variation of iodine content in German cow’s milk—investigations from Northrhine-Westfalia. Berl Munch Tierarztl Wochenschr 125(1–2):76–82. doi: 10.2376/0005-9366-125-76 Google Scholar
  65. 65.
    Kursa J, Herzig I, Travnicek J, Kroupova V (2005) Milk as a food source of iodine for human consumption in the Czech Republic. Acta Vet Brno 74(2):255–264. doi: 10.2754/avb200574020255 Google Scholar
  66. 66.
    Travnicek J, Kroupova V, Hanus O, Fiala K, Zeleny J, Konecny R, Stankova M, Svehla J (2011) Necessity to continually monitor the iodine supplementation of dairy cows (Nutnost kontinualniho sledovani suplementace dojenych krav jodem.). Veterinarstvi 61(5):276–278Google Scholar
  67. 67.
    Souci SW, Fachmann W, Kraut H et al (2006) Food composition and nutrition tables. Seventh, revised edition 2006. Food composition and nutrition tables. Seventh, revised edition 2006Google Scholar
  68. 68.
    Flachowsky G, Schöne F, Jahreis G (2006) Iodine enrichment in food of animal origin. Ernahrungs-Umschau 53(1):17–21Google Scholar
  69. 69.
    Sandell EB, Kolthoff IM (1937) Micro determination of iodine by a catalytic method. Microchim Acta 1(1):9–25. doi: 10.1007/bf01476194 Google Scholar
  70. 70.
    Fecher PA, Goldmann I, Nagengast A (1998) Determination of iodine in food samples by inductively coupled plasma mass spectrometry after alkaline extraction. J Anal At Spectrom 13(9):977–982. doi: 10.1039/a801671b Google Scholar
  71. 71.
    Shelor CP, Dasgupta PK (2011) Review of analytical methods for the quantification of iodine in complex matrices. Anal Chim Acta 702(1):16–36. doi: 10.1016/j.aca.2011.05.039 Google Scholar
  72. 72.
    Benotti J, Benotti N, Pino S, Gardyna H (1965) Determination of total iodine in urine, stool, diets and tissue. Clin Chem 11(10):932–936Google Scholar
  73. 73.
    Barker SB, Humphrey MJ, Soley MH (1951) The clinical determination of protein-bound iodine. J Clin Invest 30(1):55–62. doi: 10.1172/jci102416 Google Scholar
  74. 74.
    VDLUFA (2011) Methodenbuch Band VII, Umweltanalytik, 4. Auflage, 2.2.2.3: Bestimmung des Gehaltes an extrahierbarem Iod in Futtermitteln mittels ICP-MS. Darmstadt, VDLUFA-VerlagGoogle Scholar
  75. 75.
    CEN (2007) EN 15111 Foodstuffs—determination of trace elements—determination of iodine by ICP-MS(inductively coupled plasma mass spectrometry)Google Scholar
  76. 76.
    Leiterer M, Spörl K, Schöne F (2012) Quantitative Analyse von Jod in Futter- und Lebensmitteln mittels ICP-MS. VDLUFA-Schriftenreihe, vol 68. VDLUFA-Verlag, DarmstadtGoogle Scholar
  77. 77.
    DLG (1973) Mineralstoffgehalte in Futtermitteln. DLG-Verlag, Frankfurt am MainGoogle Scholar
  78. 78.
    Benkhedda K, Robichaud A, Turcotte S, Beraldin FJ, Cockell KA (2009) Determination of total iodine in food samples using inductively coupled plasma-mass spectrometry. J AOAC Int 92(6):1720–1727Google Scholar
  79. 79.
    Benotti J, Benotti N (1963) Protein-bound iodine, total iodine, and butanol-extractable iodine by partial automation. Clin Chem 9(4):408–416Google Scholar
  80. 80.
    Soriguer F, Gutierrez-Repiso C, Gonzalez-Romero S, Olveira G, Garriga MJ, Velasco I, Santiago P, de Escobar GM, Garcia-Fuentes E (2011) Iodine concentration in cow’s milk and its relation with urinary iodine concentrations in the population. Clin Nutr 30(1):44–48. doi: 10.1016/j.clnu.2010.07.001 Google Scholar
  81. 81.
    Melichercik J, Szijarto L, Hill AR (2006) Comparison of ion-specific electrode and high performance liquid chromatography methods for the determination of iodide in milk. J Dairy Sci 89(3):934–937Google Scholar
  82. 82.
    Moreda-Pineiro A, Romaris-Hortas V, Bermejo-Barrera P (2011) A review on iodine speciation for environmental, biological and nutrition fields. J Anal At Spectrom 26(11):2107–2152. doi: 10.1039/c0ja00272k Google Scholar
  83. 83.
    Dermelj M, Stibilj V, Stekar J, Stegnar P (1991) Trace amounts of iodine in some human and animal foodstuffs determined by rapid radiochemical neutron activation analysis. In: Momčilović B (ed) Monography, Proceedings, Round tables and Discussions of the 7th international symposium on trace elements in man and animal. IMI, Zagreb, pp 22 21–22 22Google Scholar
  84. 84.
    Groppel B, Anke M (1986) Iodine content of feedstuffs, plants and drinking water ion the GDR, vol 5 Spuremelement Symposium. Friedrich Schiller University, JenaGoogle Scholar
  85. 85.
    Anke M, Groppel B, Scholz E et al (1993) Iodine in the food chain. Trace elements in man and animals—TEMA 8. Proceedings of the eighth international symposium on trace elements in man and animalsGoogle Scholar
  86. 86.
    Jopke P, Bahardir M, Fleckenstein J, Schnug E et al (1997) Iodine determination in plant materials. Soil and plant analysis in sustainable agriculture and environment. Marcel Dekker Inc., New YorkGoogle Scholar
  87. 87.
    Gerzabek MH, Muramatsu Y, Strebl F, Yoshida S (1999) Iodine and bromine contents of some Austrian soils and relations to soil characteristics. J Plant Nutr Soil Sci-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 162(4):415–419. doi: 10.1002/(sici)1522-2624(199908)162:4<415:aid-jpln415>3.0.co;2-b Google Scholar
  88. 88.
    Schöne F, Franke K, Schlecht A, Herzog E, Leiterer M (2010) Jodgehalt von Gras- und Maissilage unter dem Einfluss verschiedener Aufschlussmedien, vol 66. VDLUFA-Schriftenreihe. VDLUFA-Verlag, DarmstadtGoogle Scholar
  89. 89.
    Anke M (2007) Iod. Handbuch der Lebensmitteltechnologie. Wiley-VCH Verlag GmBH & Co, KGaA, WeinheimGoogle Scholar
  90. 90.
    Röttger AS, Halle I, Wagner H, Breves G, Dänicke S, Flachowsky G (2012) The effects of iodine level and source on iodine carry-over in eggs and body tissues of laying hens. Arch Anim Nutr 66(5):385–401. doi: 10.1080/1745039x.2012.719795 Google Scholar
  91. 91.
    Binnerts WT (1958) Iodide in milk and milk procducts, vol IFD Doc 152. International Dairy federation, BrussellesGoogle Scholar
  92. 92.
    Alderman G, Stranks MH (1967) Iodine content of bulk herd milk in summer in relation to estimated dietary iodine intake of cows. J Sci Food Agric 18(4):151–153. doi: 10.1002/jsfa.2740180404 Google Scholar
  93. 93.
    Hemken RW, Vandersa JH, Oskarsso MA, Fryman LR (1972) Iodine intake related to milk iodine and performance of dairy-cattle. J Dairy Sci 55(7):931–934Google Scholar
  94. 94.
    Herzig I, Pisarikova B, Kursa J, Riha J (1999) Defined iodine intake and changes of its concentration in urine and milk of dairy cows. Vet Med (Praha) 44(2):35–40Google Scholar
  95. 95.
    Hillman D, Curtis AR (1980) Chronic iodine toxicity in dairy-cattle-blood-chemistry, leucocytes, and milk iodine. J Dairy Sci 63(1):55–63Google Scholar
  96. 96.
    Miller JK, Swanson EW (1973) Metabolism of ethylenediaminedihydriodide and sodium or potassium iodide by dairy-cows. J Dairy Sci 56(3):378–384Google Scholar
  97. 97.
    Swanson EW, Miller JK, Mueller FJ, Patton CS, Bacon JA, Ramsey N (1990) Iodine in milk and meat of dairy-cows fed different amounts of amounts of potassium-iodide or ethylenediamine dihydroiodide. J Dairy Sci 73(2):398–405Google Scholar
  98. 98.
    Battaglia M, Moschini M, Giuberti G, Gallo A, Piva G, Masoero F (2009) Iodine carry over in dairy cows: effects of levels of diet fortification and milk yield. Ital J Anim Sci 8:262–264Google Scholar
  99. 99.
    Castro SIB, Lacasse P, Fouquet A, Beraldin F, Robichaud A, Berthiaume R (2011) Short communication: feed iodine concentrations on farms with contrasting levels of iodine in milk. J Dairy Sci 94(9):4684–4689. doi: 10.3168/jds.2010-3714 Google Scholar
  100. 100.
    Moschini M, Battaglia M, Beone GM, Piva G, Masoero F (2010) Iodine and selenium carry over in milk and cheese in dairy cows: effect of diet supplementation and milk yield. Animal 4(1):147–155. doi: 10.1017/s175173110999098x Google Scholar
  101. 101.
    Norouzian MA (2011) Iodine in raw and pasteurized milk of dairy cows fed different amounts of potassium iodide. Biol Trace Elem Res 139(2):160–167Google Scholar
  102. 102.
    Norouzian MA, Valizadeh R, Azizi F, Hedayati M, Naserian AA (2009) The effect of feeding different levels of potassium iodide on performance, T-3 and T-4 concentrations and iodine excretion in Holstein dairy cows. J Anim Vet Adv 8(1):111–114Google Scholar
  103. 103.
    Castro SIB, Berthiaume R, Laffey P, Fouquet A, Beraldin F, Robichaud A, Lacasse P (2010) Iodine concentration in milk sampled from Canadian farms. J Food Prot 73(9):1658–1663Google Scholar
  104. 104.
    Winger RJ, Koenig J, House DA (2008) Technological issues associated with iodine fortification of foods. Trends Food Sci Technol 19(2):94–101. doi: 10.1016/j.tifs.2007.08.002 Google Scholar
  105. 105.
    Lengeman FW (1969) Radioiodine in milk of cows and goats after oral administration of radioiodate and radioiodine. Health Phys 17(4):565–569. doi: 10.1097/00004032-196910000-00005 Google Scholar
  106. 106.
    Leskova R (1969) Study of iodine nutrition of dairy cattle in Austria. Wien Tieraerztl Monatsschr 56(9):369–373Google Scholar
  107. 107.
    Diosady LL, Alberti JO, Mannar MGV, Fitzgerald S (1998) Stability of iodine in iodized salt used for correction of iodine-deficiency disorders. II. Food Nutr Bull 19(3):240–250Google Scholar
  108. 108.
    Waszkowiak K, Szymandera-Buszka K (2008) Effect of storage conditions on potassium iodide stability in iodised table salt and collagen preparations. Int J Food Sci Technol 43(5):895–899. doi: 10.1111/j.1365-2621.2007.01538.x Google Scholar
  109. 109.
    Gaitan E (1990) Goitrogens in food and water. Annu Rev Nutr 10:21–39. doi: 10.1146/annurev.nutr.10.1.21 Google Scholar
  110. 110.
    Laurberg P, Andersen S, Knudsen N, Ovesen L, Nohr SB, Pedersen IB (2002) Thiocyanate in food and iodine in milk: from domestic animal feeding to improved understanding of cretinism. Thyroid 12(10):897–902. doi: 10.1089/105072502761016520 Google Scholar
  111. 111.
    Piironen E, Virtanen AI (1963) Effect of thiocyanate in nutrition on iodine content of cows milk. Z Ernahrungswiss 3(3–4):140–147Google Scholar
  112. 112.
    Iwarsson K (1973) Rapeseed meal as a protein supplement for dairy cows. 1. Influence on certain blood and milk parameters. Acta Vet Scand 14(4):570–594Google Scholar
  113. 113.
    Papas A, Ingalls JR, Campbell LD (1979) Studies on the effects of rapeseed meal on thyroid status of cattle, glucosinonate and iodine content of milk and other parameters. J Nutr 109(7):1129–1139Google Scholar
  114. 114.
    Koch C, Schöne F, Romberg F-J, Leiterer M, Steingaß H, Südekum K-H (2012) Einfluss von Rapskuchen auf Jodgehalt in Milch und Blut von Kühen. BOKU-Symposium Tierernährung, vol 11. Universität für Bodenkultur (BOKU), WienGoogle Scholar
  115. 115.
    Schöne F, Sperrhake K, Engelhard T, Leiterer M et al (2007) The influence of rapeseed meal in feed on the iodine concentration of milk (in German). Paper presented at the 118. VDLUFA-Kongress, Freiburg i. BrGoogle Scholar
  116. 116.
    Trinacty J, Sustala M, Vrzalova D, Kudrna V, Lang P et al (2001) Milk iodine content in cows fed rapeseed meal and iodine supplement. Paper presented at the Book of Abstracts of the 52nd annual meeting of the European Association for Animal Production, Budapest, HungaryGoogle Scholar
  117. 117.
    Hejtmankova A, Kuklik L, Trnkova E, Dragounova H (2006) Iodine concentrations in cow’s milk in Central and Northern Bohemia. Czech J Anim Sci 51(5):189–195Google Scholar
  118. 118.
    Grünewald KH, Steuer G, Flachowsky G (2006) Field results of iodine level in mixed feed (Praxiserhebungen zum Jodgehalt im Mischfutter.). 9. Tagung Schweine- und Geflugelernahrung, Martin-Luther-Universitat Halle-Wittenberg, Halle, Germany, 28–30 November 2006Google Scholar
  119. 119.
    Paulikova I, Seidel H, Nagy O, Kovac G (2008) Milk iodine content in Slovakia. Acta Vet Brno 77(4):533–538. doi: 10.2754/avb200877040533 Google Scholar
  120. 120.
    Lamand M, Tressol JC (1992) Contribution of milk to iodine intake in France. Biol Trace Elem Res 32:245–251. doi: 10.1007/bf02784607 Google Scholar
  121. 121.
    Pennington JAT (1990) Iodine concentrations in United-States milk—variation due to time, season, and region. J Dairy Sci 73(12):3421–3427Google Scholar
  122. 122.
    Phillips DIW (1997) Iodine, milk, and the elimination of endemic goitre in Britain: the story of an accidental public health triumph. J Epidemiol Community Health 51(4):391–393. doi: 10.1136/jech.51.4.391 Google Scholar
  123. 123.
    Prestløkken E, Troan G, Haug A (2012) Feed factors affecting iodine content in milk. Proceedings of the 3rd Nordic Feed Science Conference, Uppsala, Sweden, 28–29 June 2012, pp 110–112Google Scholar
  124. 124.
    Rozenska L, Hejtmankova A, Kolihova D, Miholova D (2011) Selenium and iodine content in sheep milk from farms in central and east Bohemia. Sci Agric Bohemica 42(4):153–158Google Scholar
  125. 125.
    Lengemann FW (1979) Effect of low and high ambient-temperatures on metabolism of radioiodine by the lactating goat. J Dairy Sci 62(3):412–415Google Scholar
  126. 126.
    Lengemann FW, Wentworth RA (1979) Extremes of environmental-temperature and the transfer of radioiodine into milk. Health Phys 36(3):267–271. doi: 10.1097/00004032-197903000-00004 Google Scholar
  127. 127.
    Thompson RD, Johnston JE, Breiden-Stein CP, Guidry AJ, Banerjee MR, Burnett WT (1963) Effect of hot conditions on adrenal cortical, thyroidal, and other metabolic responses of dairy heifers. J Dairy Sci 46:227–231Google Scholar
  128. 128.
    Rasmussen LB, Larsen EH, Ovesen L (2000) Iodine content in drinking water and other beverages in Denmark. Eur J Clin Nutr 54(1):57–60. doi: 10.1038/sj.ejcn.1600893 Google Scholar
  129. 129.
    Franke AA, Bruhn JC, Osland RB (1983) Factors affecting iodine concentration of milk of individual cows. J Dairy Sci 66(5):997–1002Google Scholar
  130. 130.
    Lewis RC, Ralston NP (1953) Changes in the plasma level of protein-bound iodine in the young calf. J Dairy Sci 36(4):363–367Google Scholar
  131. 131.
    Groppel B (1993) Iodine deficiency of animals (in German). Mineralstoffe und Spurenelemente in der Ernährung. Verlag Media Touristik, GersdorfGoogle Scholar
  132. 132.
    Scherer-Herr K (2001) Iodine excreation via urine and milk in a dairy form in Northrhine-Westfalia (in German). PhD ThesisGoogle Scholar
  133. 133.
    Kroupova V, Travnicek J, Kursa J et al (1996) Iodine content in milk and urine of cattle (in German). Paper presented at the Arbeitstagung Mengen- und SpurenelementeGoogle Scholar
  134. 134.
    Falkenberg U, Tenhagen BA, Forderung D, Heuwieser W (2002) Effect of predipping with a iodophor teat disinfectant on iodine content of milk. Milchwissenschaft-Milk Sci Int 57(11–12):599–601Google Scholar
  135. 135.
    Travnicek J, Kursa J (2001) Iodine concentration in milk of sheep and goats from farms in south Bohemia. Acta Vet Brno 70(1):35–42. doi: 10.2754/avb200170010035 Google Scholar
  136. 136.
    Hampel K, Schone F, Bohm V, Leiterer M, Jahreis G (2004) Composition and nutritional importance of ewe’s milk and ewe’s milk products. Dtsch Lebensm-Rundsch 100(11):425–430Google Scholar
  137. 137.
    Nudda A, Battacone G, Decandia M, Acciaro M, Aghini-Lombardi F, Frigeri M, Pulina G (2009) The effect of dietary iodine supplementation in dairy goats on milk production traits and milk iodine content. J Dairy Sci 92(10):5133–5138. doi: 10.3168/jds.2009-2210 Google Scholar
  138. 138.
    Riekerink RGMO, Ohnstad I, van Santen B, Barkema HW (2012) Effect of an automated dipping and backflushing system on somatic cell counts. J Dairy Sci 95(9):4931–4938. doi: 10.3168/jds.2011-4939 Google Scholar
  139. 139.
    Conrad LM III, Hemken RW (1978) Milk iodine as influenced by an iodophor teat dip. J Dairy Sci 61(6):776–780Google Scholar
  140. 140.
    Rasmussen MD, Galton DM, Petersson LG (1991) Effects of premilking teat preparation on spores of anaerobes, bacteria, and iodine residues in milk. J Dairy Sci 74(8):2472–2478. doi: 10.3168/jds.S0022-0302(91)78423-3 Google Scholar
  141. 141.
    Flachowsky G, Schöne F, Leiterer M, Bemmann D, Spolders M, Lebzien P (2007) Influence of an iodine depletion period and teat dipping on the iodine concentration in serum and milk of cows. J Anim Feed Sci 16(1):18–25Google Scholar
  142. 142.
    Galton DM (2004) Effects of an automatic postmilking teat dipping system on new intramammary infections and iodine in milk. J Dairy Sci 87(1):225–231Google Scholar
  143. 143.
    Wilkins D (2012) Iodine levels in teat dip a matter of debate. Prog Dairym 26:69Google Scholar
  144. 144.
    Castro SIB, Berthiaume R, Robichaud A, Lacasse P (2012) Effects of iodine intake and teat-dipping practices on milk iodine concentrations in dairy cows. J Dairy Sci 95(1):213–220. doi: 10.3168/jds.2011-4679 Google Scholar
  145. 145.
    Pedriali R, Giuliani E, Margutti A, Uberti ED (1997) Iodine assay in cow milk—industrial treatments and iodine concentration. Anal Chim 87(7–8):449–456Google Scholar
  146. 146.
    Wheeler SM, Fleet GH, Ashley RJ (1983) Effect of processing upon concentratiom and distribution of natural and iodophor-derived iodine in milk. J Dairy Sci 66(2):187–195Google Scholar
  147. 147.
    Aumont G, Lequerrec F, Lamand M, Tressol JC (1987) Iodine content of dairy milk in France in 1983 and 1984. J Food Prot 50(6):490–493Google Scholar
  148. 148.
    Campbell N, Dary O, Cappuccio FP, Neufeld LM, Harding KB, Zimmermann MB (2012) Collaboration to optimize dietary intakes of salt and iodine: a critical but overlooked public health issue. Bull World Health Organ 90(1):73–74. doi: 10.2471/blt.11.092080 Google Scholar
  149. 149.
    Swanson CA, Zimmermann MB, Skeaff S, Pearce EN, Dwyer JT, Trumbo PR, Zehaluk C, Andrews KW, Carriquiry A, Caldwell KL, Egan SK, Long SE, Bailey RL, Sullivan KM, Holden JM, Betz JM, Phinney KW, Brooks SPJ, Johnson CL, Haggans CJ (2012) Summary of an NIH workshop to identify research needs to improve the monitoring of iodine status in the United States and to inform the DRI. J Nutr 142(6):1175S–1185SGoogle Scholar
  150. 150.
    Emanuelson M (1989) Rapeseed products of double low cultivars to dairy cows. Effects of long-term feeding and studies on rumen metabolism. Rapport—Institutionen for Husdjurens Utfodring och Vard (Report 189) p 182Google Scholar
  151. 151.
    Hermansen JE, Aaes O, Ostersen S, Vestergaard M (1995) Rapeseed products for dairy cows—milk yield and milk quality. Forskningsrapport fra Statens Husdyrbrugforsog 29:1–31Google Scholar
  152. 152.
    Jahreis G, Richter GH, Hartung H, Flachowsky G, Lübbe F (1995) Use of rapeseed cake in dairy cow feeding in influence on milk quality. Wirtschaftseigene Futter 41(1):99–114Google Scholar
  153. 153.
    Sustala M, Trinacty J, Kudrna V, Illek J, Sustova K (2003) The effect of iodine supplementation on its output and thyroid gland status in dairy cows on a diet containing rapeseed meal. Czech J Anim Sci 48(4):170–180Google Scholar
  154. 154.
    Vesely A, Krizova L, Trinacty J, Hadrova S, Navratilova M, Herzig I, Fisera M (2009) Changes in fatty acid profile and iodine content in milk as influenced by the inclusion of extruded rapeseed cake in the diet of dairy cows. Czech J Anim Sci 54(5):201–209Google Scholar
  155. 155.
    Böhme H, Kampf D, Lebzien P, Flachowsky G (2005) Feeding value of crambe press cake and extracted meal as well as production responses of growing-finishing pigs and dairy cows fed these by-products. Arch Anim Nutr 59(2):111–122. doi: 10.1080/17450390512331387927 Google Scholar
  156. 156.
    Travnicek J, Herzig I, Kursa J, Kroupova V, Navratilova M (2006) Iodine content in raw milk. Vet Med (Praha) 51(9):448–453Google Scholar
  157. 157.
    Brzoska F, Szybinski Z, Sliwinski B (2009) Iodine concentration in Polish milk—variations due to season and region. Endokrynol Pol 60(6):449–454Google Scholar
  158. 158.
    Hampel R, Kairies J, Below H (2009) Beverage iodine levels in Germany. Eur Food Res Technol 229(4):705–708. doi: 10.1007/s00217-009-1095-z Google Scholar
  159. 159.
    Rey-Crespo F, Miranda M, López-Alonso M et al (2013) Essential trace and toxic element concentrations in organic and conventional milk in NW Spain. Food Chem Toxicol 55:513–518. doi: 10.1016/j.fct.2013.01.040 Google Scholar
  160. 160.
    Galton DM, Petersson LG, Erb HN (1986) Milk iodine residues in herds practicing iodophor premilking teat disinfection. J Dairy Sci 69(1):267–271. doi: 10.3168/jds.S0022-0302(86)80397-6 Google Scholar
  161. 161.
    Vanryssen JBJ, Vanmalsen S, Vanblerk JG (1985) The iodine content od fresh milk samples in natal and the effect of iodophor teat dips on milk iodine content. J S Afr Vet Assoc-Tydskrif Van Die Suid-Afrikaanse Veterinere Vereniging 56(4):181–185Google Scholar
  162. 162.
    Berg JN, Padgitt D (1985) Iodine concentrations in milk from iodophor teat dips. J Dairy Sci 68(2):457–461Google Scholar
  163. 163.
    Galton DM, Petersson LG, Merrill WG, Bandler DK, Shuster DE (1984) Effects of premilking udder preparation on bacterial population, sediment, and iodine residue in milk. J Dairy Sci 67(11):2580–2589Google Scholar
  164. 164.
    Hamann J, Heeschen W (1982) On the iodine content of milk. Milchwissenschaft-Milk Sci Int 37(9):525–529Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gerhard Flachowsky
    • 1
  • Katrin Franke
    • 2
  • Ulrich Meyer
    • 1
    Email author
  • Matthias Leiterer
    • 3
  • Friedrich Schöne
    • 3
  1. 1.Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal HealthBrunswickGermany
  2. 2.Federal Institute for Risk Assessment (BfR)BerlinGermany
  3. 3.Investigation Unit-LaboratoryThuringian State Institute of AgricultureJenaGermany

Personalised recommendations