European Journal of Nutrition

, Volume 53, Issue 2, pp 557–566 | Cite as

Traditional dietary pattern of South America is linked to breast cancer: an ongoing case–control study in Argentina

  • Natalia Tumas
  • Camila Niclis
  • Laura R. Aballay
  • Alberto R. Osella
  • María del Pilar Díaz
Original Contribution



Several studies have shown the effect of dietary patterns on breast cancer risk, but none has been conducted in Argentina. The aim of this study was to extract dietary patterns from Food Frequency Questioner, to estimate their effect on breast cancer occurrence while taking into account aggregation factors (family history of breast cancer) and to explore the sensitivity of the estimates to changes in the assumptions.


A principal component exploratory factor analysis was applied to identify dietary patterns, which were then included as covariates in a multilevel logistic regression. Family history of BC was considered as a clustering variable. A multiple probabilistic sensitivity analysis was also performed.


The study included 100 cases and 294 controls. Four dietary patterns were identified. Traditional (fat meats, bakery products, and vegetable oil and mayonnaise) (OR III tertile vs I 3.13, 95 % CI 2.58–3.78), Rural (processed meat) (OR III tertile vs I 2.02, 95 % CI 1.21–3.37) and Starchy (refined grains) (OR III tertile vs I 1.82, 95 % CI 1.18–2.79) dietary patterns were positively associated with BC risk, whereas the Prudent pattern (fruit and non-starchy vegetables) (OR III tertile vs I 0.56, 95 % CI 0.41–0.77) showed a protective effect. For Traditional pattern, the median bias-adjusted ORs (3.52) were higher than the conventional (2.76).


While the Prudent pattern was associated with a reduced risk of BC, Traditional, Rural and Starchy patterns showed a promoting effect. Despite the threats to validity, the nature of associations was not strongly affected.


Dietary patterns Breast cancer Argentina Multilevel Sensitivity analysis 



Breast cancer


Odds ratio




Environmental Epidemiology of Cancer in Córdoba


Metabolic equivalent of tasks


Food Frequency Questioner


Principal component factor analysis




Akaike information


Bayesian information


Multilevel logistic regression


Body mass index


Tertile I



Natalia Tumas and CamilaNiclis’s research was supported by fellowships provided by the National Scientific and Technical Research Council (CONICET) and by the Science and Technology Secretary of the National University of Córdoba. This research was supported by the National Science and Technology Agency, FONCyT Grant PICT 2008-1814, PICT-O 2005-36035, and Science and Technical Secretariat of the University of Córdoba (SECyT-UNC) Grant 05/H207. The authors also would like to acknowledge the following institutions and physicians: Hospital Misericordia, Maternidad Nacional, Hospital La Calera, EMERCO, Clínica Privada Jesús María, Dispensarios Municipales of La Calera, Cuesta Colorada, Salsipuedes and La Granja, Drs. Perazzolo A, Chalimond E, Roldán E. and Sarmiento J.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics. CA Cancer J Clin 55:74–108CrossRefGoogle Scholar
  2. 2.
    IARC (2008) Internal Resources: Cancer Incidence and Mortality Worldwide in 2008. Accessed 20 April 2012
  3. 3.
    Bosetti C, Malvezzi M, Chatenoud L, Negri E, Levi F, La Vecchia C (2005) Trends in cancer mortality in the Americas, 1970–2000. Ann Oncol 16(3):489–511CrossRefGoogle Scholar
  4. 4.
    Díaz MP, Corrente JE, Osella AR, Muñoz SE, Aballay LR (2010) Modeling spatial distribution of cancer incidence in Cordoba, Argentina. Appl Cancer Res 30(2):245–252Google Scholar
  5. 5.
    Cappellani A, Di Vita M, Zanghi A, Cavallaro A, Piccolo G, Veroux M, Berretta M, Malaguarnera M, Canzonieri V, Lo Menzo E (2012) Diet, obesity and breast cancer: an update. Front Biosci (Schol Ed) 4:90–108CrossRefGoogle Scholar
  6. 6.
    Iwasaki M, Tsugane S (2011) Risk factors for breast cancer: epidemiological evidence from Japanese studies. Cancer Sci 102(9):1607–1614CrossRefGoogle Scholar
  7. 7.
    Swinburn BA, Sacks G, Hall KD et al (2011) The global obesity pandemic: shaped by global drivers and local environments. Lancet 378:804–814CrossRefGoogle Scholar
  8. 8.
    Filozof C, Gonzalez C, Sereday M, Mazza C, Braguinsky J (2001) Obesity prevalence and trends in Latin-American countries. Obes Rev 2(2):99–106CrossRefGoogle Scholar
  9. 9.
    Ferraroni M, Decarli A, Franceschi S, La Vechia C (1998) Alcohol consumption and risk of breast cancer: a multicentre Italian case–control study. Eur J Cancer 34:1403–1409CrossRefGoogle Scholar
  10. 10.
    Smith-Warner SA, Spiegelman D, Yaun SS et al (1998) Alcohol and breast cancer in women: a pooled analysis of cohort studies. JAMA 279:535–540CrossRefGoogle Scholar
  11. 11.
    Edefonti V, Randi G, La Vecchia C, Ferraroni M, Decarli A (2009) Dietary patterns and breast cancer: a review with focus on methodological issues. Nutr Rev 67(6):297–314CrossRefGoogle Scholar
  12. 12.
    Velie EM, Schairer C, Flood A, He JP, Khattree R, Stchazkin A (2005) Empirically derived dietary patterns and risk of postmenopausal breast cancer in a large prospective cohort study. Am J Clin Nutr 82(6):1308–1319Google Scholar
  13. 13.
    Fung T, Hu F, Holmes M, Rosner B, Hunter D, Colditz GA, Willet WC (2005) Dietary patterns and the risk of postmenopausal breast cancer. Int J Cancer 116(1):116–121CrossRefGoogle Scholar
  14. 14.
    Buck K, Vrieling A, Flesch-Janys D, Chang-Claude J (2011) Dietary patterns and the risk of postmenopausal breast cancer in a German case–control study. Cancer Causes Control 22(2):273–282CrossRefGoogle Scholar
  15. 15.
    Ronco AL, de Stefani E, Aune D, Boffetta P, Deneo-Pellegrini H, Acosta G, Mendilaharsu M (2010) Nutrient patterns and risk of breast cancer in Uruguay. Asian Pac J Cancer Prev 11(2):519–524Google Scholar
  16. 16.
    Ademawobo C, Hu F, Eunyoung C, Spiegelman D, Holmes M, Willett WC (2005) Dietary patterns and the risk of breast cancer. Ann Epidemiol 15(10):789–795CrossRefGoogle Scholar
  17. 17.
    Baglietto L, Krishnan K, Severi G, Hodge A, Brinkman M, English DR, McLean C, Hopper JL, Giles GG (2011) Dietary patterns and risk of breast cancer. Br J Cancer 104(3):524–531CrossRefGoogle Scholar
  18. 18.
    Agurs-Collins T, Rosenberg L, Makambi K, Palmer JR, Adams-Campbell L (2009) Dietary patterns and breast cancer risk in women participating in the Black Women’s Health Study. Am J Clin Nutr 90(3):621–628CrossRefGoogle Scholar
  19. 19.
    Sieri S, Vittorio K, Pala V (2004) Dietary patterns and risk of breast cancer in the ORDET cohort. Cancer Epidemiol Biomarkers Prev 13:567–572Google Scholar
  20. 20.
    Edefonti V, Decarli A, La Vecchia C, Bosetti C, Randi G, Francheschi S, Dal Maso L, Ferraroni M (2008) Nutrient dietary patterns and the risk of breast and ovarian cancers. Int J Cancer 122(3):609–613CrossRefGoogle Scholar
  21. 21.
    Murtaugh MA, Sweeney C, Giuliano AR, Herrick JS, Hines L, Byers T, Baumgartner KB, Slattery ML (2008) Diet patterns and breast cancer risk in Hispanic and non-Hispanic white women: the Four-Corners Breast Cancer Study. Am J Clin Nutr 87(4):978–984Google Scholar
  22. 22.
    Pou SA, Díaz MD, Osella AR (2012) Applying multilevel model to the relationship of dietary patterns and colorectal cancer: an ongoing case–control study in Córdoba, Argentina. Eur J Nutr 51(6):755–764CrossRefGoogle Scholar
  23. 23.
    Iscovich JM, Iscovich RB, Howe G, Shiboski S, Kaldor JM (1989) A case–control study of diet and breast cancer in Argentina. Int J Cancer 44(5):770–776CrossRefGoogle Scholar
  24. 24.
    Matos EL, Thomas DB, Sobel N, Vuoto D (1991) Breast cancer in Argentina: case–control study with special reference to meat eating habits. Neoplasma 38(3):357–366Google Scholar
  25. 25.
    Andreatta MM, Navarro A, Muñoz SE, Aballay L, Eynard AR (2010) Dietary patterns and food groups are linked to the risk of urinary tract tumors in Argentina. Eur J Cancer Prev 19(6):478–484CrossRefGoogle Scholar
  26. 26.
    Díaz MP, Osella AR, Aballay LR, Muñoz SE, Lantieri MJ, Butinof M, Paz RM, Pou S, Eynard AR, La Vecchia C (2009) Cancer incidence pattern in Cordoba, Argentina. Eur J Cancer Prev 18(4):259–266CrossRefGoogle Scholar
  27. 27.
    Niclis C, Díaz MP, La Vecchia C (2010) Breast cancer mortality trends and patterns in Córdoba, Argentina in the period 1986–2006. Eur J Cancer Prev 19(2):94–99CrossRefGoogle Scholar
  28. 28.
    Aballay LR, Díaz MD, Francisca FM, Muñoz SE (2011) Cancer incidence and pattern of arsenic concentration in drinking water wells in Córdoba, Argentina. Int J Environ Health Res 22(3):220–231CrossRefGoogle Scholar
  29. 29.
    Pou SA, Osella AR, Díaz MP (2011) Bladder cancer mortality trends and patterns in Córdoba, Argentina (1986–2006). Cancer Causes Control 22(3):407–415CrossRefGoogle Scholar
  30. 30.
    International Physical Activity Questionnaire (IPAQ) (2005) Accessed 21 May 2010
  31. 31.
    Navarro A, Osella AR, Guerra V, Muñoz SE, Lantieri MJ, Eynard AR (2001) Reproducibility and validity of a food-frequency questionnaire in assessing dietary intakes and food habits in epidemiological cancer studies in Argentina. J Exp Clin Cancer Res 20(3):203–208Google Scholar
  32. 32.
    Navarro A, Cristaldo PE, Díaz MP, Eynard AR (2000) Atlas fotográfico para cuantificar el consumo de alimentos y nutrientes en estudios nutricionales epidemiológicos en Córdoba, Argentina. Rev Fac Cienc Méd Córdoba 57(1):67–74Google Scholar
  33. 33.
    Peyrano M, Gigena J, Muñoz SE, Lantieri M, Eynard AR, Navarro A (1998) A computer software system for the analysis of Dietary data in cáncer epidemiological research. 17th International Cáncer Congress, Monduzzi Editore, p 381–384Google Scholar
  34. 34.
    Mazzei ME, Puchulu MR (1993) Tabla de composición química de alimentos. Buenos Aires, CENEXA, p 169Google Scholar
  35. 35.
    Navarro A, Muñoz SE, Lantieri MJ (1997) Composición de ácidos grasos saturados e insaturados en alimentos de consumo frecuente en Argentina. Arch Latinoamer Nutr 47:276–281Google Scholar
  36. 36.
    Suzuki R, Saji S, Toi M (2012) Impact of body mass index on breast cancer in accordance with the life-stage of women. Front Oncol 2:123CrossRefGoogle Scholar
  37. 37.
    World Cancer Research Fund/American Institute for Cancer Research (2007). Cancers. In: Food, nutrition, physical activity, and the prevention of cancer: a global perspective. AICR, Washington p 289Google Scholar
  38. 38.
    Wang Q, Li J, Zheng S, Li JY, Pang Y, Huang R, Zhang BN, Zhang B, Yang HJ, Xie XM, Tang ZH, Li H, He JJ, Fan JH, Qiao YL (2012) Breast cancer stage at diagnosis and area-based socioeconomic status: a multicenter 10-year retrospective clinical epidemiological study in China. BMC Cancer 12:122CrossRefGoogle Scholar
  39. 39.
    Wu Y, Zhang D, Kang S (2012) Physical activity and risk of breast cancer: a meta-analysis of prospective studies. Breast Cancer Res Treat 137(3):869–882CrossRefGoogle Scholar
  40. 40.
    Blakely T, Woodward A (2000) Ecological effects in multi-level studies. J Epidemiol Community Health 54:367–374CrossRefGoogle Scholar
  41. 41.
    DiPrete TA, Markus G (2004) Assessing bias in the estimation of causal effects: Rosenbaum bounds on matching estimates and instrumental variables with imperfect instruments. Sociol Methodol 34:271–310CrossRefGoogle Scholar
  42. 42.
    Hajian-Tilaki KO, Kaveh-Ahangar T (2011) Reproductive factors associated with breast cancer risk in northern Iran. Med Oncol l28(2):441–446CrossRefGoogle Scholar
  43. 43.
    Stata Statistical Software, versión 12. StataCorp LP (2011) College Station, TX 77845, USAGoogle Scholar
  44. 44.
    Orsini N, Bellocco R, Bottai M, Wolk A, Greenland S (2008) A tool for deterministic and probabilistic sensitivity analysis of epidemiologic studies. Stata J 1(8):29–48Google Scholar
  45. 45.
    Ronco AL, De Stefani E, Deneo-Pellegrini H, Boffetta P, Aune D, Silva C, Landó G, Luaces ME, Acosta G, Mendilaharsu M (2010) Dietary patterns and risk of ductal carcinoma of the breast: a factor analysis in Uruguay. Asian Pac J Cancer Prev 11(5):1187–1193Google Scholar
  46. 46.
    De Stefani E, Deneo-Pellegrini H, Boffetta P, Ronco AL, Aune D, Acosta G, Mendilaharsu M, Brennan P, Ferro G (2009) Dietary patterns and risk of cancer: a factor analysis in Uruguay. Int J Cancer 124(6):1391–1397CrossRefGoogle Scholar
  47. 47.
    Cui X, Dai Q, Tseng M, Shu XO, Gao YT, Lu W, Gu K, Zheng W (2007) Dietary patterns and breast cancer risk in the Shanghai breast cancer study. Cancer Epidemiol Biomarkers Prev 16(7):1443–1448CrossRefGoogle Scholar
  48. 48.
    Brennan SF, Cantwell MM, Cardwell CR, Velentzis LS, Woodside JV (2010) Dietary patterns and breast cancer risk: a systematic review and meta-analysis. Am J Clin Nutr 91(5):1294–1302CrossRefGoogle Scholar
  49. 49.
    Navarro A, Muñoz SE, Lantieri MJ, Díaz MP, Cristaldo PE, de Fabro SP, Eynard AR (2004) Meat cooking habits and risk of colorectal cancer in Cordoba, Argentina. Nutrition 20(10):873–877CrossRefGoogle Scholar
  50. 50.
    Alexander DD, Morimoto LM, Mink PJ, Cushing CA (2010) A review and meta-analysis of red and processed meat consumption and breast cancer. Nutr Res Rev 23(2):349–365CrossRefGoogle Scholar
  51. 51.
    Ronco A, De Stefani E, Boffetta P, Deneo-Pellegrini H, Acosta G, Mendilaharsu M (2006) Food patterns and risk of breast cancer: a factor analysis study in Uruguay. Int J Cancer 119(7):1672–1678CrossRefGoogle Scholar
  52. 52.
    Balder HF, Virtanen M, Brants HA, Krogh V, Dixon LB, Tan F, Mannisto S, Bellocco R, Pietinen P, Wolk A, Berrino F, Van den Brandt PA, Hartman AM, Goldbohm RA (2003) Common and country-specific dietary patterns in four European cohort studies. J Nutr 133(12):4246–4251Google Scholar
  53. 53.
    Ferrante D, Linetzky B, Konfino J, King A, Virgolini M, Laspiur S (2011) Encuesta Nacional de Factores de Riesgo 2009: evolución de la epidemia de enfermedades crónicas no transmisibles en Argentina. Estudio de corte transversal. Rev Argent Salud Pública 2(6):34–41Google Scholar
  54. 54.
    Männistö S, Dixon LB, Balder HF, Virtanen MJ, Krogh V, Khani BR, Berrino F, Van den Brandt PA, Hartman AM, Pietinen P, Tan F, Wolk A, Goldbohm RA (2005) Dietary patterns and breast cancer risk: results from three cohort studies in the DIETSCAN project. Cancer Causes Control 16(6):725–733CrossRefGoogle Scholar
  55. 55.
    Smith-Warner SA, Spiegelman D, Yaun SS, Adami HO, Beeson WL, Van den Brandt PA et al (2001) Intake of fruits and vegetables and risk of breast cancer: a pooled analysis of cohort studies. JAMA 285(6):769–776CrossRefGoogle Scholar
  56. 56.
    Boggs DA, Palmer JR, Wise LA, Spiegelman D, Stampfer MJ, Adems-Campbell LL, Rosenberg L (2010) Fruit and vegetable intake in relation to risk of breast cancer in the Black Women’s Health Study. Am J Epidemiol 172(11):1268–1279CrossRefGoogle Scholar
  57. 57.
    Zhang CX, Ho SC, Chen YM, Fu JH, Cheng SZ, Fu JH, Cheng SZ, Lin FY (2009) Greater vegetable and fruit intake is associated with a lower risk of breast cancer among Chinese women. Int J Cancer 125(1):181–188CrossRefGoogle Scholar
  58. 58.
    Chatenoud L, Tavani A, La Vecchia C, Jacobs DR Jr, Negri E, Levi F et al (1998) Whole grain food intake and cancer risk. Int J Cancer 77(1):24–28CrossRefGoogle Scholar
  59. 59.
    Nicodemus KK, Jacobs DR Jr, Folsom AR (2001) Whole and refined grain intake and risk of incident postmenopausal breast cancer (United States). Cancer Causes Control 12(10):917–925CrossRefGoogle Scholar
  60. 60.
    Bernstein L (1998) The epidemiology of breast cancer. Women Cancer 1S:7–13Google Scholar
  61. 61.
    Kelsey JL, Gammon MD, John EM (1993) Reproductive factors and breast cancer. Epidemiol Rev 15:36–47Google Scholar
  62. 62.
    Littman AJ, White E (2007) Relationship between age maximum height is attained, age at menarche, and age at first full-term birth and breast cancer risk. Cancer Epidemiol Biomarkers Prev 16(10):2144–2149CrossRefGoogle Scholar
  63. 63.
    Andrieu N, Smith T, Duffy S, Zaridze DG, Renaud R, Rohan T et al (1998) The effects of interaction between familial and reproductive factors on breast cancer risk: a combined analysis of seven case–control studies. Br J Cancer 77:1525–1536CrossRefGoogle Scholar
  64. 64.
    Clavel-Chapelon F (2002) Cumulative number of menstrual cycles and breast cancer risk: results from the E3 N cohort study of French women. Cancer Causes Control 13:831–838CrossRefGoogle Scholar
  65. 65.
    Tanner JM (1981) Menarcheal age. Science 214(4521):604–606CrossRefGoogle Scholar
  66. 66.
    Collaborative Group on Hormonal Factors in Breast Cancer. Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. Lancet Oncol 13(11):1141–1151Google Scholar
  67. 67.
    Zhang Jun-qing Wu, Yan-qiao ZM, Chunrong C (2010) Relationship between menstrual and reproductive factors and female breast cancer in China: meta-analysis. Modern Prev Med 37:1262–1264Google Scholar
  68. 68.
    Gail MH, Costantino JP, Pee D, Bondy M, Newman L, Selvan M, Anderson GL et al (2007) Projecting individualized absolute invasive breast cancer risk in African American women. J Natl Cancer Inst 99(23):1782–1792CrossRefGoogle Scholar
  69. 69.
    Zhang Q, Liu LY, Wang F, Mu K, Yu ZG (2012) The changes in female physical and childbearing characteristics in China and potential association with risk of breast cancer. BMC Public Health 12:368CrossRefGoogle Scholar
  70. 70.
    Aguilar Cordero MJ, González Jiménez E, Álvarez Ferre J, Padilla López CA, Mur Villar N, García López PA et al (2010) Lactancia materna: un método eficaz en la prevención del cáncer de mama. Nutr Hosp 25(6):954–958Google Scholar
  71. 71.
    Huo D, Adebamowo CA, Ogundiran TO, Akang EE, Campbell O, Adenipekun A et al (2008) Parity and breastfeeding are protective against breast cancer in Nigerian women. Br J Cancer 98:992–996CrossRefGoogle Scholar
  72. 72.
    Freund C, Mirabel L, Annane K, Mathelin C (2005) Breastfeeding and breast cancer. Gynecol Obstet Fertil 33:739–744CrossRefGoogle Scholar
  73. 73.
    Romieu I, Hernandez-Avila M, Lazcano E, Lopez L, Romero-Jaime R (1996) Breast cancer and lactation history in Mexican women. Am J Epidemiol 143(6):543–552CrossRefGoogle Scholar
  74. 74.
    Newcomb PA, Storer BE, Longnecker MP et al (1994) Lactation and a reduced risk of premenopausal breast cancer. N Engl J Med 330(2):81–87CrossRefGoogle Scholar
  75. 75.
    Yang CP, Weiss NS, Band PR, Gallagher RP, White E, Daling JR (1993) History of lactation and breast cancer risk. Am J Epidemiol 138(12):1050–1056Google Scholar
  76. 76.
    Gajalakshmi V, Mathew A, Brennan P, Rajan B, Kanimozhi VC, Mathews A et al (2009) Breast feeding and breast cancer risk in India: a multicenter case–control study. Int J Cancer 125:662–665CrossRefGoogle Scholar
  77. 77.
    Bessaoud F, Daurès JP (2008) Patterns of alcohol (especially wine) consumption and breast cancer risk: a case–control study among a population in Southern France. Ann Epidemiol 18:467–475CrossRefGoogle Scholar
  78. 78.
    Nemesure B, Wu SY, Hambleton IR, Leske MC, Hennis AJ (2009) Risk factors for breast cancer in a black population—the Barbados National Cancer Study. Int J Cancer 124:174–179CrossRefGoogle Scholar
  79. 79.
    Tessaro S, Beria JU, Tomasi E, Victora CG (2003) Breastfeeding and breast cancer: a case-control study in Southern Brazil. Cad Saude Publica 19(6):1593–1601CrossRefGoogle Scholar
  80. 80.
    Gammon MD, Schoenberg JB, Britton JA, Kelsey JL, Coates RJ, Brogan D et al (1998) Recreational physical activity and breast cancer risk among women under age 45 years. Am J Epidemiol 147(3):273–280CrossRefGoogle Scholar
  81. 81.
    Margolis KL, Mucci L, Braaten T, Kumle M, Trolle Lagerros Y, Adami HO, Lund E et al (2005) Physical activity in different periods of life and the risk of breast cancer: the Norwegian-Swedish Women’s Lifestyle and Health cohort study. Cancer Epidemiol Biomarkers Prev 14(1):27–32Google Scholar
  82. 82.
    Cheraghi Z, Poorolajal J, Hashem T, Esmailnasab N, DoostiIrani A (2012) Effect of body mass index on breast cancer during premenopausal and postmenopausal periods: a meta-analysis. PLoS ONE 7(12):e51446CrossRefGoogle Scholar
  83. 83.
    Monninkhof EM, Elias SG, Vlems FA et al (2007) Physical activity and breast cancer: a systematic review. Epidemiology 18:137–157CrossRefGoogle Scholar
  84. 84.
    Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M (2009) Body-mass index and incidence of cancer: a systematic review and meta-analysis. Int J Cancer 124:698–712CrossRefGoogle Scholar
  85. 85.
    Kuriyama S, Tsubono Y, Hozawa A et al (2005) Obesity and risk of cancer in Japan. Int J Cancer 113:148–157CrossRefGoogle Scholar
  86. 86.
    Iwasaki M, Otani T, Inoue M, Sasazuki S, Tsugane S (2007) Body size and risk for breast cancer in relation to estrogen and progesterone receptor status in Japan. Ann Epidemiol 17:304–312CrossRefGoogle Scholar
  87. 87.
    Szklo M, Nieto J (2007) Understanding lack of validity: bias. In: Epidemiology: beyond the basics 2nd ed. Jones and Bartlett Publishers, Sudbury p 109–149Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Natalia Tumas
    • 1
    • 2
    • 3
  • Camila Niclis
    • 1
    • 4
    • 3
  • Laura R. Aballay
    • 1
    • 3
  • Alberto R. Osella
    • 5
    • 6
  • María del Pilar Díaz
    • 1
    • 3
  1. 1.Statistics and Biostatistics Unit, School of Nutrition, Faculty of Medical SciencesNational University of CórdobaCórdobaArgentina
  2. 2.Center of Research and Studies in Culture and SocietyNational Council of Scientific and Technical Research (CONICET)CórdobaArgentina
  3. 3.Enrique Barros ESQ. Enfermera GordilloCiudad UniversitariaCórdobaArgentina
  4. 4.National Council of Scientific and Technical Research (CONICET)CórdobaArgentina
  5. 5.Laboratorio di Epidemiologia E BiostatisticaIRCCS Saverio de BellisCastellana GrotteItaly
  6. 6.Castellana Grotte, BariItaly

Personalised recommendations