European Journal of Nutrition

, Volume 52, Issue 8, pp 1875–1889 | Cite as

Intake of whole apples or clear apple juice has contrasting effects on plasma lipids in healthy volunteers

  • Gitte Ravn-Haren
  • Lars O. Dragsted
  • Tine Buch-Andersen
  • Eva N. Jensen
  • Runa I. Jensen
  • Mária Németh-Balogh
  • Brigita Paulovicsová
  • Anders Bergström
  • Andrea Wilcks
  • Tine R. Licht
  • Jarosław Markowski
  • Susanne Bügel
Original Contribution

Abstract

Purpose

Fruit consumption is associated with a decreased risk of CVD in cohort studies and is therefore endorsed by health authorities as part of the ‘5 or more a day’ campaigns. A glass of fruit juice is generally counted as one serving. Fruit may cause protection by affecting common risk factors of CVD.

Methods

Apples are among the most commonly consumed fruits and were chosen for a comprehensive 5 × 4 weeks dietary crossover study to assess the effects of whole apples (550 g/day), apple pomace (22 g/day), clear and cloudy apple juices (500 ml/day), or no supplement on lipoproteins and blood pressure in a group of 23 healthy volunteers.

Results

The intervention significantly affected serum total and LDL-cholesterol. Trends towards a lower serum LDL-concentration were observed after whole apple (6.7 %), pomace (7.9 %) and cloudy juice (2.2 %) intake. On the other hand, LDL-cholesterol concentrations increased by 6.9 % with clear juice compared to whole apples and pomace. There was no effect on HDL-cholesterol, TAG, weight, waist-to-hip ratio, blood pressure, inflammation (hs-CRP), composition of the gut microbiota or markers of glucose metabolism (insulin, IGF1 and IGFBP3).

Conclusions

Apples are rich in polyphenols and pectin, two potentially bioactive constituents; however, these constituents segregate differently during processing into juice products and clear juice is free of pectin and other cell wall components. We conclude that the fibre component is necessary for the cholesterol-lowering effect of apples in healthy humans and that clear apple juice may not be a suitable surrogate for the whole fruit in nutritional recommendations.

Keywords

Apples Pomace Clear juice Blood lipids CVD ISAFRUIT 

Notes

Acknowledgments

This work was supported by the Commission of the European Communities under the Sixth Framework Programme: Food Quality and Safety, contract no. 016279 ‘Increasing fruit consumption through a trans-disciplinary approach delivering high quality produce from environmentally friendly, sustainable production methods (ISAFRUIT)’. It does not necessarily reflect its view and in no way anticipates the Commission’s policy in this area. We thank all the persons who volunteered for this study, Hanne L. Pedersen, Vibeke Kegel, Berit Hoielt, Karina G. Rossen, Annette Landin, Bodil Madsen, Kate V. Vibefeldt, Pia Madsen and Lars Bentzen for excellent technical support and Claude Mona for her assistance with the proofreading of the final draft version of the manuscript.

Conflict of interest

All authors declare that they have no conflict of interest.

Supplementary material

394_2012_489_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 14 kb)

References

  1. 1.
    Bazzano LA, He J, Ogden LG, Loria CM, Vupputuri S, Myers L, Whelton PK (2002) Fruit and vegetable intake and risk of cardiovascular disease in US adults: the first National Health and Nutrition Examination Survey Epidemiologic Follow-up Study. Am J Clin Nutr 76:93–99Google Scholar
  2. 2.
    Joshipura KJ, Hu FB, Manson JE, Stampfer MJ, Rimm EB, Speizer FE, Colditz G, Ascherio A, Rosner B, Spiegelman D, Willett WC (2001) The effect of fruit and vegetable intake on risk for coronary heart disease. Ann Intern Med 134:1106–1114CrossRefGoogle Scholar
  3. 3.
    Ness AR, Powles JW (1997) Fruit and vegetables, and cardiovascular disease: a review. Int J Epidemiol 26:1–13CrossRefGoogle Scholar
  4. 4.
    Bazzano LA, He J, Ogden LG, Loria CM, Whelton PK (2003) Dietary fiber intake and reduced risk of coronary heart disease in US men and women: the National Health and Nutrition Examination Survey I Epidemiologic Follow-up Study. Arch Intern Med 163:1897–1904CrossRefGoogle Scholar
  5. 5.
    Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D (1993) Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342:1007–1011CrossRefGoogle Scholar
  6. 6.
    Hertog MG, Kromhout D, Aravanis C, Blackburn H, Buzina R, Fidanza F, Giampaoli S, Jansen A, Menotti A, Nedeljkovic S (1995) Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch Intern Med 155:381–386CrossRefGoogle Scholar
  7. 7.
    Bazzano LA, Serdula MK, Liu S (2003) Dietary intake of fruits and vegetables and risk of cardiovascular disease. Curr Atheroscler Rep 5:492–499CrossRefGoogle Scholar
  8. 8.
    Brown L, Rosner B, Willett WW, Sacks FM (1999) Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am J Clin Nutr 69:30–42Google Scholar
  9. 9.
    Erkkila AT, Lichtenstein AH (2006) Fiber and cardiovascular disease risk: how strong is the evidence? J Cardiovasc Nurs 21:3–8CrossRefGoogle Scholar
  10. 10.
    Fernandez ML (2001) Soluble fiber and nondigestible carbohydrate effects on plasma lipids and cardiovascular risk. Curr Opin Lipidol 12:35–40CrossRefGoogle Scholar
  11. 11.
    Theuwissen E, Mensink RP (2008) Water-soluble dietary fibers and cardiovascular disease. Physiol Behav 94:285–292CrossRefGoogle Scholar
  12. 12.
    Groudeva J, Kratchanova MG, Panchev IN, Kratchanov C (1997) Application of granulated apple pectin in the treatment of hyperlipoproteinaemia. I. Deriving the regression equation to describe the changes. Zeitschrift-fuer-Lebensmittel-Untersuchung-und–Forschung-A 204:374–378Google Scholar
  13. 13.
    Hillman LC, Peters SG, Fisher CA, Pomare EW (1985) The effects of the fiber components pectin, cellulose and lignin on serum cholesterol levels. Am J Clin Nutr 42:207–213Google Scholar
  14. 14.
    Jenkins DJ, Newton C, Leeds AR, Cummings JH (1975) Effect of pectin, guar gum, and wheat fibre on serum-cholesterol. Lancet 1:1116–1117CrossRefGoogle Scholar
  15. 15.
    Judd PA, Truswell AS (1982) Comparison of the effects of high- and low-methoxyl pectins on blood and faecal lipids in man. Br J Nutr 48:451–458CrossRefGoogle Scholar
  16. 16.
    Kay RM, Truswell AS (1977) Effect of citrus pectin on blood lipids and fecal steroid excretion in man. Am J Clin Nutr 30:171–175Google Scholar
  17. 17.
    Keys A, Grande F, Anderson JT (1961) Fiber and pectin in the diet and serum cholesterol concentration in man. Proc Soc Exp Biol Med 106:555–558CrossRefGoogle Scholar
  18. 18.
    Palmer GH, Dixon DG (1966) Effect of pectin dose on serum cholesterol levels. Am J Clin Nutr 18:437–442Google Scholar
  19. 19.
    Stasse-Wolthuis M, Albers HF, van Jeveren JG, Wil DJ, Hautvast JG, Hermus RJ, Katan MB, Brydon WG, Eastwood MA (1980) Influence of dietary fiber from vegetables and fruits, bran or citrus pectin on serum lipids, fecal lipids, and colonic function. Am J Clin Nutr 33:1745–1756Google Scholar
  20. 20.
    Chandalia M, Garg A, Lutjohann D, von Bergmann K, Grundy SM, Brinkley LJ (2000) Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N Engl J Med 342:1392–1398CrossRefGoogle Scholar
  21. 21.
    McKeown NM, Meigs JB, Liu S, Saltzman E, Wilson PW, Jacques PF (2004) Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the Framingham Offspring Cohort. Diabetes Care 27:538–546CrossRefGoogle Scholar
  22. 22.
    Ylonen K, Saloranta C, Kronberg-Kippila C, Groop L, Aro A, Virtanen SM (2003) Associations of dietary fiber with glucose metabolism in nondiabetic relatives of subjects with type 2 diabetes: the Botnia Dietary Study. Diabetes Care 26:1979–1985CrossRefGoogle Scholar
  23. 23.
    Lairon D, Bertrais S, Vincent S, Arnault N, Galan P, Boutron MC, Hercberg S (2003) Dietary fibre intake and clinical indices in the French Supplementation en Vitamines et Mineraux AntioXydants (SU.VI.MAX) adult cohort. Proc Nutr Soc 62:11–15CrossRefGoogle Scholar
  24. 24.
    Lairon D, Arnault N, Bertrais S, Planells R, Clero E, Hercberg S, Boutron-Ruault MC (2005) Dietary fiber intake and risk factors for cardiovascular disease in French adults. Am J Clin Nutr 82:1185–1194Google Scholar
  25. 25.
    Jenkins DJ, Kendall CW, Marchie A, Faulkner DA, Wong JM, de Souza R, Emam A, Parker TL, Vidgen E, Lapsley KG, Trautwein EA, Josse RG, Leiter LA, Connelly PW (2003) Effects of a dietary portfolio of cholesterol-lowering foods vs lovastatin on serum lipids and C-reactive protein. JAMA 290:502–510CrossRefGoogle Scholar
  26. 26.
    Dragsted LO, Pedersen A, Hermetter A, Basu S, Hansen M, Haren GR, Kall M, Breinholt V, Castenmiller JJ, Stagsted J, Jakobsen J, Skibsted L, Rasmussen SE, Loft S, Sandstrom B (2004) The 6-a-day study: effects of fruit and vegetables on markers of oxidative stress and antioxidative defense in healthy nonsmokers. Am J Clin Nutr 79:1060–1072Google Scholar
  27. 27.
    Young JF, Nielsen SE, Haraldsdottir J, Daneshvar B, Lauridsen ST, Knuthsen P, Crozier A, Sandstrom B, Dragsted LO (1999) Effect of fruit juice intake on urinary quercetin excretion and biomarkers of antioxidative status. Am J Clin Nutr 69:87–94Google Scholar
  28. 28.
    Nielsen SE, Young JF, Daneshvar B, Lauridsen ST, Knuthsen P, Sandstrom B, Dragsted LO (1999) Effect of parsley (Petroselinum crispum) intake on urinary apigenin excretion, blood antioxidant enzymes and biomarkers for oxidative stress in human subjects. Br J Nutr 81:447–455Google Scholar
  29. 29.
    Ravn-Haren G, Olsen A, Tjonneland A, Dragsted LO, Nexo BA, Wallin H, Overvad K, Raaschou-Nielsen O, Vogel U (2006) Associations between GPX1 Pro198Leu polymorphism, erythrocyte GPX activity, alcohol consumption and breast cancer risk in a prospective cohort study. Carcinogenesis 27:820–825CrossRefGoogle Scholar
  30. 30.
    Tang NP, Wang LS, Yang L, Gu HJ, Sun QM, Cong RH, Zhou B, Zhu HJ, Wang B (2008) Genetic variant in glutathione peroxidase 1 gene is associated with an increased risk of coronary artery disease in a Chinese population. Clin Chim Acta 395:89–93CrossRefGoogle Scholar
  31. 31.
    Hamanishi T, Furuta H, Kato H, Doi A, Tamai M, Shimomura H, Sakagashira S, Sakagashira S, Nishi M, Sasaki H, Sanke T, Nanjo K (2004) Functional variants in the glutathione peroxidase-1 (GPx-1) gene are associated with increased intima-media thickness of carotid arteries and risk of macrovascular diseases in japanese type 2 diabetic patients. Diabetes 53:2455–2460CrossRefGoogle Scholar
  32. 32.
    Nemoto M, Nishimura R, Sasaki T, Hiki Y, Miyashita Y, Nishioka M, Fujimoto K, Sakuma T, Ohashi T, Fukuda K, Eto Y, Tajima N (2007) Genetic association of glutathione peroxidase-1 with coronary artery calcification in type 2 diabetes: a case control study with multi-slice computed tomography. Cardiovasc Diabetol 6:23CrossRefGoogle Scholar
  33. 33.
    Winter JP, Gong Y, Grant PJ, Wild CP (2003) Glutathione peroxidase 1 genotype is associated with an increased risk of coronary artery disease. Coron Artery Dis 14:149–153CrossRefGoogle Scholar
  34. 34.
    Fagt S, Matthiessen J, Biltoft-Jensen A, Groth MV, Christensen T, Hinsch H-J, Hartkopp HB, Trolle E, Lyhne N, Møller A (2004) Udviklingen i danskernes kost 1985–2001—med fokus på sukker og alkohol samt motivation og barrierer for en sund livsstil [Development in the Danish diet 1985–2001—with focus on added sugars and alcohol and motivation and barriers for a healthy lifestyle]. In: Danish with an English summary. 2004. Danish Institute for Food and Veterinary ResearchGoogle Scholar
  35. 35.
    Boyer J, Liu RH (2004) Apple phytochemicals and their health benefits. Nutr J 3:5CrossRefGoogle Scholar
  36. 36.
    Mink PJ, Scrafford CG, Barraj LM, Harnack L, Hong CP, Nettleton JA, Jacobs DR Jr (2007) Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. Am J Clin Nutr 85:895–909Google Scholar
  37. 37.
    Sesso HD, Gaziano JM, Liu S, Buring JE (2003) Flavonoid intake and the risk of cardiovascular disease in women. Am J Clin Nutr 77:1400–1408Google Scholar
  38. 38.
    Licht TR, Hansen M, Bergstrom A, Poulsen M, Krath BN, Markowski J, Dragsted LO, Wilcks A (2010) Effects of apples and specific apple components on the cecal environment of conventional rats: role of apple pectin. BMC Microbiol 10:13CrossRefGoogle Scholar
  39. 39.
    Tsao R, Yang R (2003) Optimization of a new mobile phase to know the complex and real polyphenolic composition: towards a total phenolic index using high-performance liquid chromatography. J Chromatogr A 1018:29–40CrossRefGoogle Scholar
  40. 40.
    Markowski J, Plocharski W (2006) Determination of phenolic compounds in apples and processed apple products. J Fruit Ornam Plant Res 14:133–142Google Scholar
  41. 41.
    Leser TD, Lindecrona RH, Jensen TK, Jensen BB, Moller K (2000) Changes in bacterial community structure in the colon of pigs fed different experimental diets and after infection with Brachyspira hyodysenteriae. Appl Environ Microbiol 66:3290–3296CrossRefGoogle Scholar
  42. 42.
    Walter J, Tannock GW, Tilsala-Timisjarvi A, Rodtong S, Loach DM, Munro K, Alatossava T (2000) Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Appl Environ Microbiol 66:297–303CrossRefGoogle Scholar
  43. 43.
    Matsuki T, Watanabe K, Fujimoto J, Miyamoto Y, Takada T, Matsumoto K, Oyaizu H, Tanaka R (2002) Development of 16S rRNA-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Appl Environ Microbiol 68:5445–5451CrossRefGoogle Scholar
  44. 44.
    Vanhoutte T, Huys G, Brandt E, Swings J (2004) Temporal stability analysis of the microbiota in human feces by denaturing gradient gel electrophoresis using universal and group-specific 16S rRNA gene primers. FEMS Microbiol Ecol 48:437–446CrossRefGoogle Scholar
  45. 45.
    Vanhoutte T, De Preter V, De Brandt E, Verbeke K, Swings J, Huys G (2006) Molecular monitoring of the fecal microbiota of healthy human subjects during administration of lactulose and Saccharomyces boulardii. Appl Environ Microbiol 72:5990–5997CrossRefGoogle Scholar
  46. 46.
    Bernbom N, Norrung B, Saadbye P, Molbak L, Vogensen FK, Licht TR (2006) Comparison of methods and animal models commonly used for investigation of fecal microbiota: effects of time, host and gender. J Microbiol Methods 66:87–95CrossRefGoogle Scholar
  47. 47.
    Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76CrossRefGoogle Scholar
  48. 48.
    Ou B, Hampsch-Woodill M, Prior RL (2001) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49:4619–4626CrossRefGoogle Scholar
  49. 49.
    Roldan-Marin E, Krath BN, Poulsen M, Binderup ML, Nielsen TH, Hansen M, Barri T, Langkilde S, Cano MP, Sanchez-Moreno C, Dragsted LO (2009) Effects of an onion by-product on bioactivity and safety markers in healthy rats. Br J Nutr 102:1574–1582CrossRefGoogle Scholar
  50. 50.
    Wheeler CR, Salzman JA, Elsayed NM, Omaye ST, Korte DW Jr (1990) Automated assays for superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity. Anal Biochem 184:193–199CrossRefGoogle Scholar
  51. 51.
    Mayer B, Schumacher M, Brandstatter H, Wagner FS, Hermetter A (2001) High-throughput fluorescence screening of antioxidative capacity in human serum. Anal Biochem 297:144–153CrossRefGoogle Scholar
  52. 52.
    Girault A, Bled F, Bouvier J-M, Cornet D, Girault M (1988) Effets bénéfiques de la consommation de pommes sur le métabolisme lipidique chez l’homme. Cardiologie 12:76–79Google Scholar
  53. 53.
    Gormley TR, Kevany J, Egan JP, McFarlane R (1977) Effect of apples on serum cholesterol levels in humans. Ir J Food Sci Technol 1:117–128Google Scholar
  54. 54.
    Sable-Amplis R, Sicart R, Agid R (1983) Further studies on the cholesterol-lowering effect of apple in human. Biochemical mechanism involved. Nutr Res 3:325–328CrossRefGoogle Scholar
  55. 55.
    Hyson D, Studebaker-Hallman D, Davis PA, Gerschwin E (2000) Apple juice consumption reduces plasma low-density lipoprotein oxidation in healthy men and women. J Med Food 3:159–166CrossRefGoogle Scholar
  56. 56.
    Mahalko JR, Sandstead HH, Johnson LK, Inman LF, Milne DB, Warner RC, Haunz EA (1984) Effect of consuming fiber from corn bran, soy hulls, or apple powder on glucose tolerance and plasma lipids in type II diabetes. Am J Clin Nutr 39:25–34Google Scholar
  57. 57.
    Mayne PD, McGill AR, Gormley TR, Tomkin GH, Julian TR, O’Moore RR (1982) The effect of apple fibre on diabetic control and plasma lipids. Ir J Med Sci 151:36–41CrossRefGoogle Scholar
  58. 58.
    Mee KA, Gee DL (1997) Apple fiber and gum arabic lowers total and low-density lipoprotein cholesterol levels in men with mild hypercholesterolemia. J Am Diet Assoc 97:422–424CrossRefGoogle Scholar
  59. 59.
    Davidson MH, Dugan LD, Stocki J, Dicklin MR, Maki KC, Coletta F, Cotter R, McLeod M, Hoersten K (1998) A low-viscosity soluble-fiber fruit juice supplement fails to lower cholesterol in hypercholesterolemic men and women. J Nutr 128:1927–1932Google Scholar
  60. 60.
    de Conceicao OM, Sichieri R, Sanchez MA (2003) Weight loss associated with a daily intake of three apples or three pears among overweight women. Nutrition 19:253–256CrossRefGoogle Scholar
  61. 61.
    Nagasako-Akazome Y, Kanda T, Ikeda M, Shimasaki H (2005) Serum cholesterol-lowering effect of apple polyphenols in healthy subjects. J Oleo Sci 54:143–151CrossRefGoogle Scholar
  62. 62.
    Nagasako-Akazome Y, Kanda T, Ohtake Y, Shimasaki H, Kobayashi T (2007) Apple polyphenols influence cholesterol metabolism in healthy subjects with relatively high body mass index. J Oleo Sci 56:417–428CrossRefGoogle Scholar
  63. 63.
    Aleixandre A, Miguel M (2008) Dietary fiber in the prevention and treatment of metabolic syndrome: a review. Crit Rev Food Sci Nutr 48:905–912CrossRefGoogle Scholar
  64. 64.
    Aprikian O, Duclos V, Guyot S, Besson C, Manach C, Bernalier A, Morand C, Remesy C, Demigne C (2003) Apple pectin and a polyphenol-rich apple concentrate are more effective together than separately on cecal fermentations and plasma lipids in rats. J Nutr 133:1860–1865Google Scholar
  65. 65.
    Sembries S, Dongowski G, Mehrlander K, Will F, Dietrich H (2004) Dietary fiber-rich colloids from apple pomace extraction juices do not affect food intake and blood serum lipid levels, but enhance fecal excretion of steroids in rats. J Nutr Biochem 15:296–302CrossRefGoogle Scholar
  66. 66.
    Kay RM (1982) Dietary fiber. J Lipid Res 23:221–242Google Scholar
  67. 67.
    Hill MJ, Taylor AJ, Thompson MH, Wait R (1982) Fecal steroids and urinary volatile phenols in four Scandinavian populations. Nutr Cancer 4:67–73CrossRefGoogle Scholar
  68. 68.
    Wilms LC, Hollman PC, Boots AW, Kleinjans JC (2005) Protection by quercetin and quercetin-rich fruit juice against induction of oxidative DNA damage and formation of BPDE-DNA adducts in human lymphocytes. Mutat Res 582:155–162CrossRefGoogle Scholar
  69. 69.
    Cao G, Prior RL (1998) Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clin Chem 44:1309–1315Google Scholar
  70. 70.
    Delroisse JM, Boulvin AL, Parmentier I, Dauphin RD, Vandenbol M, Portetelle D (2008) Quantification of Bifidobacterium spp. and Lactobacillus spp. in rat fecal samples by real-time PCR. Microbiol Res 163:663–670CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gitte Ravn-Haren
    • 1
    • 2
  • Lars O. Dragsted
    • 1
  • Tine Buch-Andersen
    • 1
  • Eva N. Jensen
    • 1
  • Runa I. Jensen
    • 1
  • Mária Németh-Balogh
    • 1
    • 3
  • Brigita Paulovicsová
    • 1
    • 3
  • Anders Bergström
    • 4
  • Andrea Wilcks
    • 4
  • Tine R. Licht
    • 4
  • Jarosław Markowski
    • 5
  • Susanne Bügel
    • 1
  1. 1.Department of Nutrition, Exercise and Sports, Faculty of ScienceUniversity of CopenhagenFrederiksbergDenmark
  2. 2.Division of Toxicology and Risk Assessment, National Food InstituteTechnical University of DenmarkSøborgDenmark
  3. 3.Department of Human Nutrition, Faculty of Agrobiology and Food ResourcesSlovak University of Agriculture in NitraNitraSlovakia
  4. 4.Division of Food Microbiology, National Food InstituteTechnical University of DenmarkSøborgDenmark
  5. 5.Department of Storage and ProcessingResearch Institute of Pomology and FloricultureSkierniewicePoland

Personalised recommendations