European Journal of Nutrition

, Volume 52, Issue 6, pp 1607–1619 | Cite as

Aspalathin improves hyperglycemia and glucose intolerance in obese diabetic ob/ob mice

  • Myoung Jin Son
  • Miki Minakawa
  • Yutaka Miura
  • Kazumi Yagasaki
Original Contribution



Although several researches have demonstrated that rooibos extract has hypoglycemic effect, the role of aspalathin, a main polyphenol in the extract, remains unclear. Our aims were to find specific mechanisms for anti-diabetic action of aspalathin employing a rat skeletal muscle-derived cell line (L6 myocytes) and a rat-derived pancreatic β-cell line (RIN-5F cells) and to investigate its effect in type 2 diabetic model ob/ob mice.


We investigated in vitro the effect of aspalathin on the glucose metabolism through the studies on molecular mechanisms of glucose uptake using cultured L6 myotubes. We also measured the antioxidative ability of aspalathin against reactive oxygen species (ROS) generated by artificial advanced glycation end product (AGE) in RIN-5F cells. In vivo, ob/ob mice were fed 0.1 % aspalathin-containing diet for 5 weeks, and the effect of aspalathin on fasting blood glucose level, glucose intolerance, and hepatic gene expression was studied.


Aspalathin dose dependently increased glucose uptake by L6 myotubes and promoted AMP-activated protein kinase (AMPK) phosphorylation. Aspalathin enhanced GLUT4 translocation to plasma membrane in L6 myoblasts and myotubes. In RIN-5F cells, aspalathin suppressed AGE-induced rises in ROS. In vivo, aspalathin significantly suppressed the increase in fasting blood glucose levels and improved glucose intolerance. Furthermore, aspalathin decreased expression of hepatic genes related to gluconeogenesis and lipogenesis.


Hypoglycemic effect of aspalathin is related to increased GLUT4 translocation to plasma membrane via AMPK activation. In addition, aspalathin reduces the gene expression of hepatic enzymes related to glucose production and lipogenesis. These results strongly suggest that aspalathin has anti-diabetic potential.


Aspalathin AMPK GLUT4 translocation Hyperglycemia Advanced glycation end products (AGEs) 



Phosphoenolpyruvate carboxykinase




Glycogen synthase


Liver glycogen phosphorylase


Acetyl-CoA carboxylase


Fatty acid synthase


Stearoyl-CoA desaturase 1


Adenosine monophosphate-activated protein kinase


Glucose transporter 4



This research was supported in part by the Japan Society for the Promotion of Science and in part by Rooibos Marketing Ltd., Japan.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

394_2012_466_MOESM1_ESM.ppt (151 kb)
Supplementary material 1 (PPT 151 kb)


  1. 1.
    Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053CrossRefGoogle Scholar
  2. 2.
    Kaneto H, Katakami N, Matsuhisa M, Matsuoka TA (2010) Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators Inflamm 2010:453892CrossRefGoogle Scholar
  3. 3.
    Saltiel AR, Kahn CR (2011) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806CrossRefGoogle Scholar
  4. 4.
    Towler MC, Hardie DG (2007) AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 100:328–341CrossRefGoogle Scholar
  5. 5.
    Sakamoto K, McCarthy A, Smith D, Green KA, Hardie D, Grahame Hardie D, Ashworth A, Alessi DR (2005) Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J 24:1810–1820CrossRefGoogle Scholar
  6. 6.
    Ojuka EO (2004) Role of calcium and AMP kinase in the regulation of mitochondrial biogenesis and GLUT4 levels in muscle. Proc Nutr Soc 63:275–278CrossRefGoogle Scholar
  7. 7.
    Huang S, Czech MP (2007) The GLUT4 glucose transporter. Cell Metab 5:237–252CrossRefGoogle Scholar
  8. 8.
    Hammes HP, Alt A, Niwa T, Clausen JT, Bretzel RG, Brownlee M, Schleicher ED (1999) Differential accumulation of advanced glycation end products in the course of diabetic retinopathy. Diabetologia 42:728–736CrossRefGoogle Scholar
  9. 9.
    Bucala R, Vlassara H (1995) Advanced glycosylation end products in diabetic renal and vascular disease. Am J Kidney Dis 26:875–888CrossRefGoogle Scholar
  10. 10.
    Wautier JL, Guillausseau PJ (2001) Advanced glycation end products, their receptors and diabetic angiopathy. Diabetes Metab 27:535–542Google Scholar
  11. 11.
    Tomás-Barberán FA, Andrés-Lacueva C (2012) Polyphenols and health: current state and progress. J Agric Food Chem 60:8773–8775CrossRefGoogle Scholar
  12. 12.
    Snijman PW, Joubert E, Ferreira D, Li XC, Ding Y, Green IR, Gelderblom W (2009) Antioxidant activity of the dihydrochalcones Aspalathin and Nothofagin and their corresponding flavones in relation to other Rooibos (Aspalathus linearis) Flavonoids, Epigallocatechin Gallate, and Trolox. J Agric Food Chem 57:6678–6684CrossRefGoogle Scholar
  13. 13.
    Snijman PW, Swanevelder S, Joubert E, Green IR, Gelderblom W (2007) The antimutagenic activity of the major flavonoids of rooibos (Aspalathus linearis): some dose-response effects on mutagen activation-flavonoid interactions. Mutat Res 631:111–123CrossRefGoogle Scholar
  14. 14.
    Standley L, Winterton P, Marnewick JL, Gelderblom WC, Joubert E, Britz TJ (2001) Influence of processing stages on antimutagenic and antioxidant potentials of rooibos tea. J Agric Food Chem 49:114–117CrossRefGoogle Scholar
  15. 15.
    Baba H, Ohtsuka Y, Haruna H, Lee T, Nagata S, Maeda M, Yamashiro Y, Shimizu T (2009) Studies of anti-inflammatory effects of Rooibos tea in rats. Pediatr Int 51:700–704CrossRefGoogle Scholar
  16. 16.
    Marnewick JL, Van der Westhuizen FH, Joubert E, Swanevelder S, Swart P, Gelderblom WC (2009) Chemoprotective properties of rooibos (Aspalathus linearis), honeybush (Cyclopia intermedia) herbal and green and black (Camellia sinensis) teas against cancer promotion induced by fumonisin B1 in rat liver. Food Chem Toxicol 47:220–229CrossRefGoogle Scholar
  17. 17.
    Khan AU, Gilani AH (2006) Selective bronchodilatory effect of Rooibos tea (Aspalathus linearis) and its flavonoid, chrysoeriol. Eur J Nutr 45:463–469CrossRefGoogle Scholar
  18. 18.
    Beltrán-Debón R, Rull A, Rodríguez-Sanabria F, Iswaldi I, Herranz-López M, Aragonès G, Camps J, Alonso-Villaverde C, Menéndez JA, Micol V, Segura-Carretero A, Joven J (2011) Continuous administration of polyphenols from aqueous rooibos (Aspalathus linearis) extract ameliorates dietary-induced metabolic disturbances in hyperlipidemic mice. Phytomedicine 18:414–424CrossRefGoogle Scholar
  19. 19.
    Kawano A, Nakamura H, Hata S, Minakawa M, Miura Y, Yagasaki K (2009) Hypoglycemic effect of aspalathin, a rooibos tea component from Aspalathus linearis, in type 2 diabetic model db/db mice. Phytomedicine 16:437–443CrossRefGoogle Scholar
  20. 20.
    Yagasaki K, Morisaki N, Kitahara Y, Miura A, Funabiki R (2003) Involvement of protein kinase C activation in l-leucine-induced stimulation of protein synthesis in L6 myotubes. Cytotechnology 43:97–103CrossRefGoogle Scholar
  21. 21.
    Minakawa M, Kawano A, Miura Y, Yagasaki K (2011) Hypoglycemic effect of resveratrol in type 2 diabetic model db/db mice and its actions in cultured L6 myotubes and RIN-5F pancreatic β-cells. J Clin Biochem Nutr 48:237–244CrossRefGoogle Scholar
  22. 22.
    Ha BG, Nagaoka M, Yonezawa T, Tanabe R, Woo JT, Kato H, Chung UI, Yagasaki K (2012) Regulatory mechanism for the stimulatory action of genistein on glucose uptake in vitro and in vivo. J Nutr Biochem 23:501–509CrossRefGoogle Scholar
  23. 23.
    Minakawa M, Miura Y, Yagasaki K (2012) Piceatannol, a resveratrol derivative, promotes glucose uptake through glucose transporter 4 translocation to plasma membrane in L6 myocytes and suppresses blood glucose levels in type 2 diabetic model db/db mice. Biochem Biophys Res Commun 422:469–475CrossRefGoogle Scholar
  24. 24.
    Kume S, Kato S, Yamagishi S, Inagaki Y, Ueda S, Arima N, Okawa T, Kojiro M, Nagata K (2005) Advanced glycation end-products attenuate human mesenchymal stem cells and prevent cognate differentiation into adipose tissue, cartilage, and bone. J Bone Miner Res 20:1647–1658CrossRefGoogle Scholar
  25. 25.
    Kojima K, Uesugi T, Toda T, Miura Y, Yagasaki K (2002) Hypolipidemic action of the soybean isoflavones genistein and genistin in glomerulonephritic rats. Lipids 37:261–265CrossRefGoogle Scholar
  26. 26.
    Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159CrossRefGoogle Scholar
  27. 27.
    Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174Google Scholar
  28. 28.
    Fecchi K, Volonte D, Hezel MP, Schmeck K, Galbiati F (2006) Spatial and temporal regulation of GLUT4 translocation by flotillin-1 and caveolin-3 in skeletal muscle cells. FASEB J 20:705–707Google Scholar
  29. 29.
    Iglesias MA, Ye JM, Frangioudakis G, Saha AK, Tomas E, Ruderman NB, Cooney GJ, Kraegen EW (2003) AICAR administration causes an apparent enhancement of muscle and liver insulin action in insulin resistant high-fat-fed rats. Diabetes 51:2886–2894CrossRefGoogle Scholar
  30. 30.
    Fisher JS, Gao J, Han DH, Holloszy JO, Nolte LA (2002) Activation of AMP kinase enhances sensitivity of muscle glucose transport to insulin. Am J Physiol Endocrinol Metab 282:E18–E23Google Scholar
  31. 31.
    Tan KC, Shiu SW, Wong Y, Tam X (2011) Serum advanced glycation end products (AGEs) are associated with insulin resistance. Diabetes Metab Res Rev 27:488–492CrossRefGoogle Scholar
  32. 32.
    Unoki H, Bujo H, Yamagishi S, Takeuchi M, Imaizumi T, Saito Y (2007) Advanced glycation end products attenuate cellular insulin sensitivity by increasing the generation of intracellular reactive oxygen species in adipocytes. Diabetes Res Clin Pract 76:236–244CrossRefGoogle Scholar
  33. 33.
    Unoki H, Yamagishi S (2008) Advanced glycation end products and insulin resistance. Curr Pharm Des 12:987–989CrossRefGoogle Scholar
  34. 34.
    Miele C, Riboulet A, Maitan MA, Oriente F, Romano C, Formisano P, Giudicelli J, Beguinot F, Van Obberghen E (2003) Human glycated albumin affects glucose metabolism in L6 skeletal muscle cells by impairing insulin-induced insulin receptor substrate (IRS) signaling through a protein kinase Cα-mediated mechanism. J Biol Chem 278:47376–47387CrossRefGoogle Scholar
  35. 35.
    Esteve E, Ricart W, Fernández-Real JM (2009) Adipocytokines and insulin resistance: the possible role of lipocalin-2, retinol binding protein-4, and adiponectin. Diabetes Care 32:362–367CrossRefGoogle Scholar
  36. 36.
    Ceddia RB, Somwar R, Maida A, Fang X, Bikopoulos G, Sweeney G (2005) Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia 48:132–139CrossRefGoogle Scholar
  37. 37.
    Barthel A, Schmoll D (2003) Novel concepts in insulin regulation of hepatic gluconeogenesis. Am J Physiol Endocrinol Metab 285:E685–E692Google Scholar
  38. 38.
    Lochhead PA, Salt IP, Walker KS, Hardie DG, Sutherland C (2000) 5-Aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase. Diabetes 49:896–903CrossRefGoogle Scholar
  39. 39.
    He L, Sabet A, Djedjos S, Miller R, Sun X, Hussain MA, Radovick S, Wondisford FE (2009) Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell 137:635–646CrossRefGoogle Scholar
  40. 40.
    Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8:1288–1295CrossRefGoogle Scholar
  41. 41.
    Govorko D, Logendra S, Wang Y, Esposito D, Komarnytsky S, Ribnicky D, Poulev A, Wang A, Cefalu W, Raskin I (2007) Polyphenolic compounds from Artemisia dracunculus L. inhibit PEPCK gene expression and gluconeogenesis in an H4IIE hepatoma cell line. Am J Physiol Endocrinol Metab 293:1503–1510CrossRefGoogle Scholar
  42. 42.
    Kaneto H, Kajimoto Y, Miyagawa J, Matsuoka T, Fujitani Y, Umayahara Y, Hanafusa T, Matsuzawa Y, Yamasaki Y, Hori M (1999) Beneficial effects of antioxidants in diabetes: possible protection of pancreatic β-cells against glucose toxicity. Diabetes 48:2398–2406CrossRefGoogle Scholar
  43. 43.
    Yamamoto M, Yamato E, Toyoda S, Tashiro F, Ikegami H, Yodoi J, Miyazaki J (2008) Transgenic expression of antioxidant protein thioredoxin in pancreatic beta cells prevents progression of type 2 diabetes mellitus. Antioxid Redox Signal 10:43–49CrossRefGoogle Scholar
  44. 44.
    Von Gadow A, Joubert E, Hansmann CF (1997) Comparison of the antioxidant activity of aspalathin with that of other plant phenols of rooibos tea (Aspalathus linearis), α-tocopherol, BHT, and BHA. J Agric Food Chem 45:632–638CrossRefGoogle Scholar
  45. 45.
    Stalmach A, Mullen W, Pecorari M, Serafini M, Crozier A (2009) Bioavailability of C-linked dihydrochalcone and flavanone glucosides in humans following ingestion of unfermented and fermented rooibos teas. J Agric Food Chem 57:7104–7111CrossRefGoogle Scholar
  46. 46.
    Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Myoung Jin Son
    • 1
  • Miki Minakawa
    • 1
  • Yutaka Miura
    • 2
  • Kazumi Yagasaki
    • 2
    • 3
  1. 1.Department of Applied Life Science, Graduate School of Agricultural ScienceTokyo University of Agriculture and TechnologyFuchuJapan
  2. 2.Division of Applied Biological Chemistry, Institute of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
  3. 3.Graduate School of MedicineThe University of TokyoBunkyo-KuJapan

Personalised recommendations