Advertisement

European Journal of Nutrition

, Volume 52, Issue 5, pp 1523–1532 | Cite as

An atherogenic diet decreases liver FXR gene expression and causes severe hepatic steatosis and hepatic cholesterol accumulation: effect of endurance training

  • Isabelle Côté
  • Emilienne Tudor Ngo Sock
  • Émile Lévy
  • Jean-Marc Lavoie
Original Contribution

Abstract

Purpose

The aim of this study was to determine the effects of an atherogenic diet (AD; 40 % lipid, 1.25 % cholesterol, kcal) on triglyceride (TAG) and cholesterol accumulation in liver and on gene expression of liver X receptor (LXR) and farnesoid X receptor (FXR) and their target genes and to observe if these responses are affected by endurance training.

Methods

Sprague–Dawley rats (n = 32) were divided into two groups and randomly assigned to an AD or a standard diet (SD) for 7 weeks. Half of the rats in each group were assigned to an exercise training program for 5 days/week.

Results

The AD resulted in a large (P < 0.01) accumulation in liver TAG (4×) along with elevated liver and plasma cholesterol without any gain in peripheral fat mass. The liver TAG and cholesterol accumulations were associated with an important reduction (P < 0.01; 60 %) in FXR, but no change in LXR transcripts. Accompanying the reduction in FXR gene expression, we found an increase (P < 0.001) in SREBP-1c and a decrease (P < 0.01) in MTP mRNAs suggesting an increased lipogenesis and a reduced VLDL production, respectively. The AD was also associated with lower HMG-CoA-r, squalene synthase, and ABCG8 transcripts (P < 0.001). In the intestine, exercise training resulted in higher NPC1L1, ABCG5, and ABCG8 in SD-fed animals, while all these increases were suppressed under the AD feeding.

Conclusions

It is concluded that dietary cholesterol favors liver TAG and cholesterol accumulations associated with an important reduction in FXR transcripts.

Keywords

Cholesterol transport Bile acid synthesis Liver cholesterol Exercise 

Notes

Acknowledgments

This work was supported by grants from the Canadian Institutes of Health Research (CIHR; T 0602 145.02) and the Natural Sciences and Engineering Research Council of Canada (NSERC; 7594).

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    Comhair TM, Garcia Caraballo SC, Dejong CH, Lamers WH, Kohler SE (2011) Dietary cholesterol, female gender and n-3 fatty acid deficiency are more important factors in the development of non-alcoholic fatty liver disease than the saturation index of the fat. Nutr Metab (Lond) 8:4CrossRefGoogle Scholar
  2. 2.
    Treguier M, Briand F, Boubacar A, Andre A, Magot T, Nguyen P, Krempf M, Sulpice T, Ouguerram K (2011) Diet-induced dyslipidemia impairs reverse cholesterol transport in hamsters. Eur J Clin Invest 41(9):921–928CrossRefGoogle Scholar
  3. 3.
    Wang YM, Zhang B, Xue Y, Li ZJ, Wang JF, Xue CH, Yanagita T (2010) The mechanism of dietary cholesterol effects on lipids metabolism in rats. Lipids Health Dis 9:4CrossRefGoogle Scholar
  4. 4.
    Subramanian S, Goodspeed L, Wang S, Kim J, Zeng L, Ioannou GN, Haigh WG, Yeh MM, Kowdley KV, O’Brien KD et al (2011) Dietary cholesterol exacerbates hepatic steatosis and inflammation in obese LDL receptor-deficient mice. J Lipid Res 52(9):1626–1635CrossRefGoogle Scholar
  5. 5.
    Bhathena J, Kulamarva A, Martoni C, Malgorzata A, Malhotra UM, Paul A, Prakash S (2011) Diet-induced metabolic hamster model of nonalcoholic fatty liver disease. Diabetes Metab Syndr Obes 4:195–203Google Scholar
  6. 6.
    Wojcicka G, Jamroz-Wisniewska A, Horoszewicz K, Beltowski J (2007) Liver X receptors (LXRs). Part I: structure, function, regulation of activity, and role in lipid metabolism. Postepy Hig Med Dosw (Online) 61:736–759Google Scholar
  7. 7.
    Redinger RN (2003) Nuclear receptors in cholesterol catabolism: molecular biology of the enterohepatic circulation of bile salts and its role in cholesterol homeostasis. J Lab Clin Med 142(1):7–20CrossRefGoogle Scholar
  8. 8.
    Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ (1996) An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature 383(6602):728–731CrossRefGoogle Scholar
  9. 9.
    Cipriani S, Mencarelli A, Palladino G, Fiorucci S (2010) FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats. J Lipid Res 51(4):771–784CrossRefGoogle Scholar
  10. 10.
    Kong B, Luyendyk JP, Tawfik O, Guo GL (2009) Farnesoid X receptor deficiency induces nonalcoholic steatohepatitis in low-density lipoprotein receptor-knockout mice fed a high-fat diet. J Pharmacol Exp Ther 328(1):116–122CrossRefGoogle Scholar
  11. 11.
    Yang ZX, Shen W, Sun H (2010) Effects of nuclear receptor FXR on the regulation of liver lipid metabolism in patients with non-alcoholic fatty liver disease. Hepatol Int 4(4):741–748CrossRefGoogle Scholar
  12. 12.
    Correa Antunez MI, Moran Penco JM, Amaya Lozano JL, Leal Macho A, Macia Botejara E, Saenz Santamaria J (2010) Changes in the fat composition and histomorphology of the liver after partial intestinal resections. Nutr Hosp 25(6):999–1005Google Scholar
  13. 13.
    Yoshida M (2011) Novel role of NPC1L1 in the regulation of hepatic metabolism: potential contribution of ezetimibe in NAFLD/NASH treatment. Curr Vasc Pharmacol 9(1):121–123CrossRefGoogle Scholar
  14. 14.
    Zhu Y, Li F, Guo GL (2011) Tissue-specific function of farnesoid X receptor in liver and intestine. Pharmacol Res 63(4):259–265CrossRefGoogle Scholar
  15. 15.
    Frith J, Newton JL (2010) Liver disease in older women. Maturitas 65(3):210–214CrossRefGoogle Scholar
  16. 16.
    Gauthier MS, Couturier K, Latour JG, Lavoie JM (2003) Concurrent exercise prevents high-fat-diet-induced macrovesicular hepatic steatosis. J Appl Physiol 94(6):2127–2134Google Scholar
  17. 17.
    Meissner M, Havinga R, Boverhof R, Kema I, Groen AK, Kuipers F (2010) Exercise enhances whole-body cholesterol turnover in mice. Med Sci Sports Exerc 42(8):1460–1468CrossRefGoogle Scholar
  18. 18.
    Gollnick PD (1963) Chronic effect of exercise on liver cholesterol of normal and hypercholesteremic rats. Am J Physiol 205:453–456Google Scholar
  19. 19.
    Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509Google Scholar
  20. 20.
    Xu G, Pan LX, Li H, Forman BM, Erickson SK, Shefer S, Bollineni J, Batta AK, Christie J, Wang TH et al (2002) Regulation of the farnesoid X receptor (FXR) by bile acid flux in rabbits. J Biol Chem 277(52):50491–50496CrossRefGoogle Scholar
  21. 21.
    Fujino T, Murakami K, Ozawa I, Minegishi Y, Kashimura R, Akita T, Saitou S, Atsumi T, Sato T, Ando K et al (2009) Hypoxia downregulates farnesoid X receptor via a hypoxia-inducible factor-independent but p38 mitogen-activated protein kinase-dependent pathway. FEBS J 276(5):1319–1332CrossRefGoogle Scholar
  22. 22.
    Shi QY, Lin YG, Zhou X, Lin YQ, Yan S (2010) Expression of FXR mRNA, PPAR alpha mRNA and bile acid metabolism related genes in intrahepatic cholestasis of pregnant rats. Zhonghua Gan Zang Bing Za Zhi 18(12):927–930Google Scholar
  23. 23.
    Zhong XY, Yu JH, Zhang WG, Wang ZD, Dong Q, Tai S, Cui YF, Li H (2012) MicroRNA-421 functions as an oncogenic miRNA in biliary tract cancer through down-regulating farnesoid X receptor expression. Gene 493(1):44–51CrossRefGoogle Scholar
  24. 24.
    Fuchs M (2012) Non-alcoholic Fatty liver disease: the bile Acid-activated farnesoid x receptor as an emerging treatment target. J Lipids 2012:934396Google Scholar
  25. 25.
    Watanabe M, Houten SM, Wang L, Moschetta A, Mangelsdorf DJ, Heyman RA, Moore DD, Auwerx J (2004) Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest 113(10):1408–1418Google Scholar
  26. 26.
    Zhang Y, Castellani LW, Sinal CJ, Gonzalez FJ, Edwards PA (2004) Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes Dev 18(2):157–169CrossRefGoogle Scholar
  27. 27.
    Chapados NA, Lavoie JM (2010) Exercise training increases hepatic endoplasmic reticulum (er) stress protein expression in MTP-inhibited high-fat fed rats. Cell Biochem Funct 28(3):202–210CrossRefGoogle Scholar
  28. 28.
    Kosters A, Frijters RJ, Schaap FG, Vink E, Plosch T, Ottenhoff R, Jirsa M, De Cuyper IM, Kuipers F, Groen AK (2003) Relation between hepatic expression of ATP-binding cassette transporters G5 and G8 and biliary cholesterol secretion in mice. J Hepatol 38(6):710–716CrossRefGoogle Scholar
  29. 29.
    Yu L, Gupta S, Xu F, Liverman AD, Moschetta A, Mangelsdorf DJ, Repa JJ, Hobbs HH, Cohen JC (2005) Expression of ABCG5 and ABCG8 is required for regulation of biliary cholesterol secretion. J Biol Chem 280(10):8742–8747CrossRefGoogle Scholar
  30. 30.
    Lambert G, Amar MJ, Guo G, Brewer HB Jr, Gonzalez FJ, Sinal CJ (2003) The farnesoid X-receptor is an essential regulator of cholesterol homeostasis. J Biol Chem 278(4):2563–2570CrossRefGoogle Scholar
  31. 31.
    Gupta S, Pandak WM, Hylemon PB (2002) LXR alpha is the dominant regulator of CYP7A1 transcription. Biochem Biophys Res Commun 293(1):338–343CrossRefGoogle Scholar
  32. 32.
    Ando H, Tsuruoka S, Yamamoto H, Takamura T, Kaneko S, Fujimura A (2005) Regulation of cholesterol 7alpha-hydroxylase mRNA expression in C57BL/6 mice fed an atherogenic diet. Atherosclerosis 178(2):265–269CrossRefGoogle Scholar
  33. 33.
    Pramfalk C, Angelin B, Eriksson M, Parini P (2007) Cholesterol regulates ACAT2 gene expression and enzyme activity in human hepatoma cells. Biochem Biophys Res Commun 364(2):402–409CrossRefGoogle Scholar
  34. 34.
    Gadaleta RM, van Mil SW, Oldenburg B, Siersema PD, Klomp LW, van Erpecum KJ (2010) Bile acids and their nuclear receptor FXR: relevance for hepatobiliary and gastrointestinal disease. Biochim Biophys Acta 1801(7):683–692CrossRefGoogle Scholar
  35. 35.
    Alvaro A, Rosales R, Masana L, Vallve JC (2010) Polyunsaturated fatty acids down-regulate in vitro expression of the key intestinal cholesterol absorption protein NPC1L1: no effect of monounsaturated nor saturated fatty acids. J Nutr Biochem 21(6):518–525CrossRefGoogle Scholar
  36. 36.
    Levy E, Spahis S, Sinnett D, Peretti N, Maupas-Schwalm F, Delvin E, Lambert M, Lavoie MA (2007) Intestinal cholesterol transport proteins: an update and beyond. Curr Opin Lipidol 18(3):310–318CrossRefGoogle Scholar
  37. 37.
    Altmann SW, Davis HR Jr, Zhu LJ, Yao X, Hoos LM, Tetzloff G, Iyer SP, Maguire M, Golovko A, Zeng M et al (2004) Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 303(5661):1201–1204CrossRefGoogle Scholar
  38. 38.
    Durstine JL, Grandjean PW, Davis PG, Ferguson MA, Alderson NL, DuBose KD (2001) Blood lipid and lipoprotein adaptations to exercise: a quantitative analysis. Sports Med 31(15):1033–1062CrossRefGoogle Scholar
  39. 39.
    Meissner M, Havinga R, Boverhof R, Kema I, Groen AK, Kuipers F (2010) Exercise enhances whole-body cholesterol turnover in mice. Med Sci Sports Exerc 42(8):1460–1468CrossRefGoogle Scholar
  40. 40.
    Wilund KR, Feeney LA, Tomayko EJ, Weiss EP, Hagberg JM (2009) Effects of endurance exercise training on markers of cholesterol absorption and synthesis. Physiol Res 58(4):545–552Google Scholar
  41. 41.
    Meissner M, Lombardo E, Havinga R, Tietge UJ, Kuipers F, Groen AK (2011) Voluntary wheel running increases bile acid as well as cholesterol excretion and decreases atherosclerosis in hypercholesterolemic mice. Atherosclerosis 218(2):323–329CrossRefGoogle Scholar
  42. 42.
    Gauthier MS, Favier R, Lavoie JM (2006) Time course of the development of non-alcoholic hepatic steatosis in response to high-fat diet-induced obesity in rats. Br J Nutr 95(2):273–281CrossRefGoogle Scholar
  43. 43.
    Basciano H, Miller AE, Naples M, Baker C, Kohen R, Xu E, Su Q, Allister EM, Wheeler MB, Adeli K (2009) Metabolic effects of dietary cholesterol in an animal model of insulin resistance and hepatic steatosis. Am J Physiol Endocrinol Metab 297(2):E462–E473CrossRefGoogle Scholar
  44. 44.
    Matsuzawa N, Takamura T, Kurita S, Misu H, Ota T, Ando H, Yokoyama M, Honda M, Zen Y, Nakanuma Y et al (2007) Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology 46(5):1392–1403CrossRefGoogle Scholar
  45. 45.
    Yiu WF, Kwan PL, Wong CY, Kam TS, Chiu SM, Chan SW, Chan R (2011) Attenuation of fatty liver and prevention of hypercholesterolemia by extract of Curcuma longa through regulating the expression of CYP7A1, LDL-receptor, HO-1, and HMG-CoA reductase. J Food Sci 76(3):H80–H89CrossRefGoogle Scholar
  46. 46.
    Koopmans SJ, Dekker R, Ackermans MT, Sauerwein HP, Serlie MJ, van Beusekom HM, van den Heuvel M, van der Giessen WJ (2011) Dietary saturated fat/cholesterol, but not unsaturated fat or starch, induces C-reactive protein associated early atherosclerosis and ectopic fat deposition in diabetic pigs. Cardiovasc Diabetol 10:64CrossRefGoogle Scholar
  47. 47.
    Zhang Y, Ge X, Heemstra LA, Chen WD, Xu J, Smith JL, Ma H, Kasim N, Edwards PA, Novak CM (2012) Loss of FXR protects against diet-induced obesity and accelerates liver carcinogenesis in ob/ob mice. Mol Endocrinol 26(2):272–280CrossRefGoogle Scholar
  48. 48.
    Prawitt J, Abdelkarim M, Stroeve JH, Popescu I, Duez H, Velagapudi VR, Dumont J, Bouchaert E, van Dijk TH, Lucas A et al (2011) Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity. Diabetes 60(7):1861–1871CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Isabelle Côté
    • 1
  • Emilienne Tudor Ngo Sock
    • 1
  • Émile Lévy
    • 2
  • Jean-Marc Lavoie
    • 1
  1. 1.Department of KinesiologyUniversité de MontréalMontrealCanada
  2. 2.Department of NutritionCentre de recherche du CHU Ste-JustineMontrealCanada

Personalised recommendations