European Journal of Nutrition

, Volume 52, Issue 3, pp 1233–1242 | Cite as

Reduced cholesterol levels in renal membranes of undernourished rats may account for urinary Na+ loss

  • Fabiana S. T. Oliveira
  • Leucio D. Vieira-Filho
  • Edjair V. Cabral
  • Luzia S. Sampaio
  • Paulo A. Silva
  • Vera C. O. Carvalho
  • Adalberto Vieyra
  • Marcelo Einicker-Lamas
  • Vera L. M. Lima
  • Ana D. O. Paixão
Original Contribution



It has been demonstrated that reabsorption of Na+ in the thick ascending limb is reduced and the ability to concentrate urine can be compromised in undernourished individuals. Alterations in phospholipid and cholesterol content in renal membranes, leading to Na+ loss and the inability to concentrate urine, were investigated in undernourished rats.


Sixty-day-old male Wistar rats were utilized to evaluate (1) phospholipid and cholesterol content in the membrane fraction of whole kidneys, (2) cholesterol content and the levels of active Na+ transporters, (Na+ + K+)ATPase and Na+-ATPase, in basolateral membranes of kidney proximal tubules, and (3) functional indicators of medullary urine concentration.


Body weight in the undernourished group was 73 % lower than in control. Undernourishment did not affect the levels of cholesterol in serum or in renal homogenates. However, membranes of whole kidneys revealed 56 and 66 % reduction in the levels of total phospholipids and cholesterol, respectively. Furthermore, cholesterol and (Na+ + K+)ATPase activity in proximal tubule membranes were reduced by 55 and 68 %, respectively. Oxidative stress remained unaltered in the kidneys of undernourished rats. In contrast, Na+-ATPase activity, an enzyme with all regulatory components in membrane, was increased in the proximal tubules of undernourished rats. Free water clearance and fractional Na+ excretion were increased by 86 and 24 %, respectively, and urinary osmolal concentration was 21 % lower in undernourished rats than controls.


Life-long undernutrition reduces the levels of total phospholipids and cholesterol in membranes of renal tubular cells. This alteration in membrane integrity could diminish (Na+ + K+)ATPase activity resulting in reduced Na+ reabsorption and urinary concentrating ability.


Undernutrition Phospholipids Kidney (Na+ + K+)ATPase Na+-ATPase Free water clearance 



The authors thank Glória Costa-Sarmento for technical support and BioMedES for editing the manuscript. This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/PROCAD 519/2010), Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco, Brazilian Research Council (470740/2010-8) and Fundação Carlos Chagas Filho de Amparo à pesquisa do Estado do Rio de Janeiro, Brazil.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Brinkman HJ, de Pee S, Sanogo I, Subran L, Bloem MW (2010) High food prices and the global financial crisis have reduced access to nutritious food and worsened nutritional status and health. J Nutr 140:153S–161S. doi: 10.3945/jn.109.110767 CrossRefGoogle Scholar
  2. 2.
    Ahmed T, Rahman S, Cravioto A (2009) Oedematous malnutrition. Indian J Med Res 130:651–654Google Scholar
  3. 3.
    Schrier RW (2008) Vasopressin and aquaporin 2 in clinical disorders of water homeostasis. Semin Nephrol 28:289–296. doi: 10.1016/j.semnephrol.2008.03.009 CrossRefGoogle Scholar
  4. 4.
    Hebert SC, Andreoli TE (1984) Control of NaCl transport in the thick ascending limb. Am J Physiol 246:F745–F756Google Scholar
  5. 5.
    Wittner M, Di Stefano A, Mandon B, Roinel N, de Rouffignac C (1991) Stimulation of NaCl reabsorption by antidiuretic hormone in the cortical thick ascending limb of Henle’s loop of the mouse. Pflugers Arch 419:212–214. doi: 10.1007/BF00373010 CrossRefGoogle Scholar
  6. 6.
    Welker P, Böhlick A, Mutig K, Salanova M, Kahl T, Schlüter H et al (2008) Renal Na+-K+-Cl-cotransporter activity and vasopressin-induced trafficking are lipid raft-dependent. Am J Physiol Renal Physiol 295(3):F789–F802. doi: 10.1152/ajprenal.90227.2008 CrossRefGoogle Scholar
  7. 7.
    Welker P, Geist B, Frühauf JH, Salanova M, Groneberg DA, Krause E et al (2007) Role of lipid rafts in membrane delivery of renal epithelial Na+-K+-ATPase, thick ascending limb. Am J Physiol Regul Integr Comp Physiol 292:R1328–R1337. doi: 10.1152/ajpregu.00166.2006 CrossRefGoogle Scholar
  8. 8.
    Kudo LH, Shimizu MH, Seguro AC, Rocha AS (1991) Renal concentrating defect in protein malnutrition: the role of the thick ascending limb of Henle and inner medullary collecting duct. Nephron 57:156–163. doi: 10.1159/000186243 CrossRefGoogle Scholar
  9. 9.
    Paixão ADO, Maciel CR, Monteiro JC (2003) Low sodium chloride content in a multideficient diet induces renal vasodilatation in rats. Nutr Res 23:85–89. doi: 10.1046/j.1440-1681.2003.03787.x CrossRefGoogle Scholar
  10. 10.
    Costa-Silva JH, Silva PA, Pedi N, Luzardo R, Einicker-Lamas M, Lara LS et al (2009) Chronic undernutrition alters renal active Na+ transport in young rats: potential hidden basis for pathophysiological alterations in adulthood? Eur J Nutr 48:437–445. doi: 10.1007/s00394-009-0032-z CrossRefGoogle Scholar
  11. 11.
    Eiam-Ong S, Sabatini S (1999) Food restriction beneficially affects renal transport and cortical membrane lipid content in rats. J Nutr 129:1682–1687Google Scholar
  12. 12.
    Chi Y, Gupta RK (1998) Alterations in heart and kidney membrane phospholipids in hypertension as observed by 31P nuclear magnetic resonance. Lipids 33:1023–1030. doi: 10.1007/s11745-998-0301-z CrossRefGoogle Scholar
  13. 13.
    Eiam-Ong S, Eiam-Ong S, Sabatini S (2001) Life-long food restriction prevents renal membrane lipid deposition and lowers renal work in rats. J Med Assoc Thai 84(Suppl 1):S295–S305Google Scholar
  14. 14.
    Féraille E, Doucet A (2001) Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney: hormonal control. Physiol Rev 81:345–418Google Scholar
  15. 15.
    Rocafull MA, Romero FJ, Thomas LE, Del Castillo JR (2011) Isolation and cloning of the K+-independent, ouabain-insensitive Na+-ATPase. Biochim Biophys Acta 1808:1684–1700. doi: 10.1016/j.bbamem.2011.02.010 CrossRefGoogle Scholar
  16. 16.
    Proverbio F, Del Castillo JR (1981) Na+-stimulated ATPase activities in kidney basal-lateral plasma membranes. Biochim Biophys Acta 646:99–108. doi: 10.1016/0005-2736(81)90276-5 CrossRefGoogle Scholar
  17. 17.
    Gomes CP, Leão-Ferreira LR, Pinheiro AA, Gomes-Quintana E, Wengert M, Lopes AG et al (2008) Crosstalk between the signaling pathways triggered by angiotensin II and adenosine in the renal proximal tubules: implications for modulation of Na+-ATPase activity. Peptides 29:2033–2038. doi: 10.1016/j.peptides.2008.07.004 CrossRefGoogle Scholar
  18. 18.
    Vieira-Filho LD, Lara LS, Silva PA, Luzardo R, Einicker-Lamas M, Cardoso HD et al (2009) Placental oxidative stress in malnourished rats and changes in kidney proximal tubule sodium ATPases in offspring. Clin Exp Pharmacol Physiol 36:1157–1163. doi: 10.1111/j.1440-1681.2009.05212.x CrossRefGoogle Scholar
  19. 19.
    Maia JCC, Gomes SL, Juliani MH (1993) Genes of antigenes of parasites. In: Morel CM (ed) A laboratory manual. Ed. Fundação Oswaldo Cruz, Rio de Janeiro, pp 146–157Google Scholar
  20. 20.
    Teodósio NR, Lago ES, Romani SA, Guedes RC (1990) A regional basic diet from northeast Brazil as a dietary model of experimental malnutrition. Arch Latinoam Nutr 40(4):533–547Google Scholar
  21. 21.
    Green HH, Harrington AR, Valtin H (1970) On the role of antidiuretic hormone in the inhibition of acute water diuresis in adrenal insufficiency and the effects of gluco- and mineralocorticoids in reversing the inhibition. J Clin Invest 49(9):1724–1736CrossRefGoogle Scholar
  22. 22.
    Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310. doi: 10.1016/S0076-6879(78)52032-6 CrossRefGoogle Scholar
  23. 23.
    Silva LA, Vieira-Filho LD, Barreto IS, Cabral EV, Vieyra A, Paixão AD (2011) Prenatal undernutrition changes renovascular responses of nimesulide in rat kidneys. Basic Clin Pharmacol Toxicol 108:115–121. doi: 10.1111/j.1742-7843.2010.00625.x CrossRefGoogle Scholar
  24. 24.
    Vieira-Filho LD, Lara LS, Silva PA, Santos FT, Luzardo R, Oliveira FS et al (2011) Placental malnutrition changes the regulatory network of renal Na-ATPase in adult rat progeny: reprogramming by maternal α-tocopherol during lactation. Arch Biochem Biophys 505:91–97. doi: 10.1016/ CrossRefGoogle Scholar
  25. 25.
    Vieyra A, Nachbin L, de Dios-Abad E, Goldfeld M, Meyer-Fernandes JR, de Moraes L (1986) Comparison between calcium transport and adenosine triphosphatase activity in membrane vesicles derived from rabbit kidney proximal tubules. J Biol Chem 261:4247–4255Google Scholar
  26. 26.
    Whittembury G, Proverbio F (1970) Two modes of Na extrusion in cells from guinea pig kidney cortex slices. Pflugers Arch 316:1–25. doi: 10.1007/BF00587893 CrossRefGoogle Scholar
  27. 27.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  28. 28.
    Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509Google Scholar
  29. 29.
    Lima VL, Gillett MP, Silva MN, Maia M de M, Chaves Filho M (1986) Changes in the lipid composition of erythrocytes during prolonged fasting in lizard (Tropidurus torquatos) and rat (Rattus norvegicus). Comp Biochem Physiol B 83:691–695Google Scholar
  30. 30.
    Bartlett GR (1959) Colorimetric assay methods for free and phosphorylated glyceric acids. J Biol Chem 234:469–471Google Scholar
  31. 31.
    Courchaine AJ, Miller WH, Stein DB Jr (1959) Rapid semi-micro procedure for estimating free and total cholesterol. Clin Chem 5:609–614Google Scholar
  32. 32.
    Huang CJ, Fwu ML (1992) Protein insufficiency aggravates the enhanced lipid peroxidation and reduced activities of antioxidative enzymes in rats fed diets high in polyunsaturated fat. J Nutr 122:1182–1189Google Scholar
  33. 33.
    Huang CJ, Fwu ML (1993) Degree of protein deficiency affects the extent of the depression of the antioxidative enzyme activities and the enhancement of tissue lipid peroxidation in rats. J Nutr 123:803–810Google Scholar
  34. 34.
    de Souza AS, Pacheco L da C, Castro P da S, Hokoç JN, Rocha MS, do Carmo MG (2008) Brain fatty acid profiles and spatial learning in malnourished rats: effects of nutritional intervention. Nutr Neurosci 11(3):119–127. doi: 10.1179/147683008X301504
  35. 35.
    Innis SM (2003) Perinatal biochemistry and physiology of long-chain polyunsaturated fatty acids. J Pediatr 143(4 Suppl):S1–S8. doi: 10.1067/S0022-3476(03)00396-2 Google Scholar
  36. 36.
    Jahoor F, Badaloo A, Reid M, Forrester T (2008) Protein metabolism in severe childhood malnutrition. Ann Trop Paediatr 28(2):87–101. doi: 10.1179/146532808X302107 CrossRefGoogle Scholar
  37. 37.
    Prinz W (2002) Cholesterol trafficking in the secretory and endocytic systems. Semin Cell Dev Biol 13(3):197–203. doi: 10.1016/j.bbr.2011.03.031 CrossRefGoogle Scholar
  38. 38.
    Cornelius F (2001) Modulation of Na, K-ATPase and Na-ATPase activity by phospholipids and cholesterol. I. Steady-state kinetics. Biochemistry 40:8842–8851. doi: 10.1021/bi010541g CrossRefGoogle Scholar
  39. 39.
    Chen Y, Cai T, Wang H, Li Z, Loreaux E, Lingrel JB et al (2009) Regulation of intracellular cholesterol distribution by Na/K-ATPase. J Biol Chem 284:14881–14890. doi: 10.1074/jbc.M109.003574 CrossRefGoogle Scholar
  40. 40.
    De Tomás ME, Mercuri O, Rodrigo A (1980) Effects of dietary protein and EFA deficiency on liver delta 5, delta 6 and delta 9 desaturase activities in the early developing rat. J Nutr 110(4):595–599Google Scholar
  41. 41.
    Martinez-Maldonado M, Benabe JE, Wilcox JN, Wang S, Luo C (1993) Renal renin, angiotensinogen, and ANG I-converting-enzyme gene expression: influence of dietary protein. Am J Physiol 264:F981–F988Google Scholar
  42. 42.
    Rangel LB, Lopes AG, Lara LS, Carvalho TL, Silva IV, Oliveira MM et al (2005) PI-PLCβ is involved in the modulation of the proximal tubule Na+-ATPase by angiotensin II. Regul Pept 127:177–182. doi: 10.1016/j.regpep.2004.12.007 CrossRefGoogle Scholar
  43. 43.
    Caruso-Neves C, Rangel LB, Lara LS, Lopes AG (2001) Regulation of the renal proximal tubule second sodium pump by angiotensins. Braz J Med Biol Res 34(8):1079–1084. doi: 10.1590/S0100-879X2001000800015 CrossRefGoogle Scholar
  44. 44.
    Langley-Evans SC, Welham SJ, Jackson AA (1999) Fetal exposure to a maternal low protein diet impairs nephrogenesis and promotes hypertension in the rat. Life Sci 64:965–974. doi: 10.1016/S0024-3205(99)00022-3 CrossRefGoogle Scholar
  45. 45.
    Paixão AD, Maciel CR, Teles MB, Figueiredo-Silva J (2001) Regional Brazilian diet-induced low birth weight is correlated with changes in renal hemodynamics and glomerular morphometry in adult age. Biol Neonate 80:239–246. doi: 10.1159/000047150 CrossRefGoogle Scholar
  46. 46.
    Hoppe CC, Evans RG, Moritz KM, Cullen-McEwen LA, Fitzgerald SM, Dowling J et al (2007) Combined prenatal and postnatal protein restriction influences adult kidney structure, function, and arterial pressure. Am J Physiol Regul Integr Comp Physiol 292:R462–R469. doi: 10.1152/ajpregu.0079.2006 CrossRefGoogle Scholar
  47. 47.
    Mori T, Cowley AW Jr (2004) Renal oxidative stress in medullary thick ascending limbs produced by elevated NaCl and glucose. Hypertension 43(2):341–346. doi: 10.1161/01.HYP.0000113295.31481.36 CrossRefGoogle Scholar
  48. 48.
    Banday AA, Fazili FR, Lokhandwala MF (2007) Oxidative stress causes renal dopamine D1 receptor dysfunction and hypertension via mechanisms that involve nuclear factor-kappaB and protein kinase C. J Am Soc Nephrol 18:1446–1457. doi: 10.1681/ASN.2006121373 CrossRefGoogle Scholar
  49. 49.
    Banday AA, Lokhandwala MF (2008) Oxidative stress-induced renal angiotensin AT1 receptor upregulation causes increased stimulation of sodium transporters and hypertension. Am J Physiol Renal Physiol 295:F698–F706. doi: 10.1152/ajprenal.90308.2008 CrossRefGoogle Scholar
  50. 50.
    Sands JM, Naruse M, Jacobs JD, Wilcox JN, Klein JD (1996) Changes in aquaporin-2 protein contribute to the urine concentrating defect in rats fed a low-protein diet. J Clin Invest 97:2807–2814. doi: 10.1172/JCI118736 CrossRefGoogle Scholar
  51. 51.
    Peil AE, Stolte H, Schmidt-Nielsen B (1990) Uncoupling of glomerular and tubular regulations of urea excretion in rat. Am J Physiol 258:F1666–F1674Google Scholar
  52. 52.
    Isozaki T, Verlander JW, Sands JM (1993) Low protein diet alters urea transport and cell structure in rat initial inner medullary collecting duct. J Clin Invest 92:2448–2457. doi: 10.1172/JCI116852 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Fabiana S. T. Oliveira
    • 1
    • 2
  • Leucio D. Vieira-Filho
    • 1
    • 3
  • Edjair V. Cabral
    • 1
    • 3
  • Luzia S. Sampaio
    • 3
    • 4
  • Paulo A. Silva
    • 3
    • 4
  • Vera C. O. Carvalho
    • 2
  • Adalberto Vieyra
    • 3
    • 4
  • Marcelo Einicker-Lamas
    • 3
    • 4
  • Vera L. M. Lima
    • 2
  • Ana D. O. Paixão
    • 1
    • 3
  1. 1.Departamento de Fisiologia e Farmacologia, Centro de Ciências BiológicasUniversidade Federal de PernambucoRecifeBrazil
  2. 2.Department of BiochemistryFederal University of PernambucoRecifeBrazil
  3. 3.National Institute of Science and Technology in Structural Biology and BioimageRio de JaneiroBrazil
  4. 4.Carlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations