European Journal of Nutrition

, Volume 52, Issue 3, pp 1115–1125 | Cite as

Vitamin D status indicators in indigenous populations in East Africa

  • Martine F. Luxwolda
  • Remko S. Kuipers
  • Ido P. Kema
  • E. van der Veer
  • D. A. Janneke Dijck-Brouwer
  • Frits A. J. Muskiet
Original Contribution



Sufficient vitamin D status may be defined as the evolutionary established circulating 25-hydroxyvitamin D [25(OH)D] matching our Paleolithic genome.


We studied serum 25(OH)D [defined as 25(OH)D2 + 25(OH)D3] and its determinants in 5 East African ethnical groups across the life cycle: Maasai (MA) and Hadzabe (HA) with traditional life styles and low fish intakes, and people from Same (SA; intermediate fish), Sengerema (SE; high fish), and Ukerewe (UK; high fish). Samples derived from non-pregnant adults (MA, HA, SE), pregnant women (MA, SA, SE), mother–infant couples at delivery (UK), infants at delivery and their lactating mothers at 3 days (MA, SA, SE), and lactating mothers at 3 months postpartum (SA, SE). Erythrocyte docosahexaenoic acid (RBC-DHA) was determined as a proxy for fish intake.


The mean ± SD 25(OH)D of non-pregnant adults and cord serum were 106.8 ± 28.4 and 79.9 ± 26.4 nmol/L, respectively. Pregnancy, delivery, ethnicity (which we used as a proxy for sunlight exposure), RBC-DHA, and age were the determinants of 25(OH)D. 25(OH)D increased slightly with age. RBC-DHA was positively related to 25(OH)D, notably 25(OH)D2. Pregnant MA (147.7 vs. 118.3) and SE (141.9 vs. 89.0) had higher 25(OH)D than non-pregnant counterparts (MA, SE). Infant 25(OH)D at delivery in Ukerewe was about 65 % of maternal 25(OH)D.


Our ancient 25(OH)D amounted to about 115 nmol/L and sunlight exposure, rather than fish intake, was the principal determinant. The fetoplacental unit was exposed to high 25(OH)D, possibly by maternal vitamin D mobilization from adipose tissue, reduced insulin sensitivity, trapping by vitamin D-binding protein, diminished deactivation, or some combination.


25-Hydroxyvitamin D Evolution East Africa Sunlight exposure Fish intake Pregnancy 



We thank NIMR, Tanzania, for their correspondence and help in the writing of our proposal for ethical clearance. We further thank em. Prof. E. R. Boersma, Prof. J. J. M. van Roosmalen, Prof. S. Massawe, Prof. A. Massawe, Prof. G. V. Mann, J. van der Meulen, P. Gunneweg, P. Schwerzel, R. Shaffer, Dr. J. Changalucha, Drs. C. van Rij, Sr. M. J. Voeten, J. Lugalla, G. Msafiri, N. Mchomvu, S. Mazzuki, rafiki Martini, and all other staff, doctors, and nurses from the local hospitals in Tanzania for their help in our project. We thank Dr. M. Volmer, for his statistical and technical assistance and the VSB Foundation and FrieslandCampina (Dr. A. Schaafsma) for their financial support.

Conflict of interest

There are no conflicts of interest.


  1. 1.
    Broadhurst CL, Cunnane SC, Crawford MA (1998) Rift Valley lake fish and shellfish provided brain-specific nutrition for early Homo. Br J Nutr 79:3–21CrossRefGoogle Scholar
  2. 2.
    Broadhurst CL, Wang Y, Crawford MA et al (2002) Brain-specific lipids from marine, lacustrine, or terrestrial food resources: potential impact on early African Homo sapiens. Comp Biochem Physiol B: Biochem Mol Biol 131:653–673CrossRefGoogle Scholar
  3. 3.
    Braun DR, Harris JW, Levin NE et al (2010) Early hominin diet included diverse terrestrial and aquatic animals 1.95 Ma in East Turkana, Kenya. Proc Natl Acad Sci USA 107:10002–10007CrossRefGoogle Scholar
  4. 4.
    Muskiet FAJ, Kuipers RS (2010) Lessons from shore-based hunter-gatherer diets in East Africa. In: Cunnane SC, Stewart KM (eds) Human brain evolution. The influence of freshwater and marine food resources. Wiley, Hoboken, pp 77–103CrossRefGoogle Scholar
  5. 5.
    Cunnane SC (2010) Human brain evolution: a question of solving key nutritional and metabolic constraints on mammalian brain development. In: Cunnane SC, Stewart KM (eds) Human brain evolution. The influence of freshwater and marine food resources. Wiley, Hoboken, pp 33–76CrossRefGoogle Scholar
  6. 6.
    Crawford MA (2010) Long-chain polyunsaturated fatty acids in human brain evolution. In: Cunnane SC, Stewart KM (eds) Human brain evolution. The influence of freshwater and marine food resources. Wiley, Hoboken, pp 13–31CrossRefGoogle Scholar
  7. 7.
    Kesby JP, Eyles DW, Burne TH et al (2011) The effects of vitamin D on brain development and adult brain function. Mol Cell Endocrinol 347:121–127CrossRefGoogle Scholar
  8. 8.
    Bourre JM, Paquotte P (2008) Seafood (wild and farmed) for the elderly: contribution to the dietary intakes of iodine, selenium, DHA and vitamins B12 and D. J Nutr Health Aging 12:186–192CrossRefGoogle Scholar
  9. 9.
    Sioen I, De Henauw S, Van Camp J et al (2009) Comparison of the nutritional-toxicological conflict related to seafood consumption in different regions worldwide. Regul Toxicol Pharmacol 55:219–228CrossRefGoogle Scholar
  10. 10.
    Stringer C (2000) Palaeoanthropology. Coasting out of Africa. Nature 405:24,5, 27Google Scholar
  11. 11.
    Yuen AW, Jablonski NG (2010) Vitamin D: in the evolution of human skin colour. Med Hypotheses 74:39–44CrossRefGoogle Scholar
  12. 12.
    Jablonski NG, Chaplin G (2000) The evolution of human skin coloration. J Hum Evol 39:57–106CrossRefGoogle Scholar
  13. 13.
    Jablonski NG, Chaplin G (2010) Colloquium paper: human skin pigmentation as an adaptation to UV radiation. Proc Natl Acad Sci USA 107(Suppl 2):8962–8968CrossRefGoogle Scholar
  14. 14.
    Brouwer DA, van Beek J, Ferwerda H et al (1998) Rat adipose tissue rapidly accumulates and slowly releases an orally-administered high vitamin D dose. Br J Nutr 79:527–532CrossRefGoogle Scholar
  15. 15.
    Ross AC, Taylor CL, Yaktine AL, Del Valle HB (2011) Dietary reference intakes for calcium and vitamin D. Available at: Accessed 25 Dec 2011
  16. 16.
    Richards MP, Schulting RJ, Hedges RE (2003) Archaeology: sharp shift in diet at onset of Neolithic. Nature 425:366CrossRefGoogle Scholar
  17. 17.
    Mata-Granados JM, Cuenca-Acevedo R, Luque de Castro MD et al (2010) Vitamin D deficiency and high serum levels of vitamin A increase the risk of osteoporosis evaluated by Quantitative Ultrasound Measurements (QUS) in postmenopausal Spanish women. Clin Biochem 43:1064–1068CrossRefGoogle Scholar
  18. 18.
    Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266–281CrossRefGoogle Scholar
  19. 19.
    Grant WB, Cross HS, Garland CF et al (2009) Estimated benefit of increased vitamin D status in reducing the economic burden of disease in western Europe. Prog Biophys Mol Biol 99:104–113CrossRefGoogle Scholar
  20. 20.
    Holick MF (2003) Evolution and function of vitamin D. Recent Results Cancer Res 164:3–28CrossRefGoogle Scholar
  21. 21.
    Urashima M, Segawa T, Okazaki M et al (2010) Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Am J Clin Nutr 91:1255–1260CrossRefGoogle Scholar
  22. 22.
    Vieth R (2006) What is the optimal vitamin D status for health? Prog Biophys Mol Biol 92:26–32CrossRefGoogle Scholar
  23. 23.
    Grant WB (2009) How strong is the evidence that solar ultraviolet B and vitamin D reduce the risk of cancer? An examination using Hill’s criteria for causality. Dermatoendocrinology 1:17–24CrossRefGoogle Scholar
  24. 24.
    Sackett DL, Rosenberg WM, Gray JA et al (1996) Evidence based medicine: what it is and what it isn’t. BMJ 312:71–72CrossRefGoogle Scholar
  25. 25.
    Blumberg J, Heaney RP, Huncharek M et al (2010) Evidence-based criteria in the nutritional context. Nutr Rev 68:478–484CrossRefGoogle Scholar
  26. 26.
    Hanekamp JC (2006) The precautionary principle: a critique in the context of the EU food supplements directive. Available at:
  27. 27.
    Schlingmann KP, Kaufmann M, Weber S et al (2011) Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N Engl J Med 365:410–421CrossRefGoogle Scholar
  28. 28.
    Jackson RD, LaCroix AZ, Gass M et al (2006) Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med 354:669–683CrossRefGoogle Scholar
  29. 29.
    Bjelakovic G, Gluud LL, Nikolova D et al (2011) Vitamin D supplementation for prevention of mortality in adults. Cochrane Database Syst Rev 7:1–202Google Scholar
  30. 30.
    Zittermann A, Schleithoff SS, Koerfer R (2007) Vitamin D and vascular calcification. Curr Opin Lipidol 18:41–46CrossRefGoogle Scholar
  31. 31.
    Freedman BI, Wagenknecht LE, Hairston KG et al (2010) Vitamin D, adiposity, and calcified atherosclerotic plaque in african-americans. J Clin Endocrinol Metab 95:1076–1083CrossRefGoogle Scholar
  32. 32.
    Michaelsson K, Baron JA, Snellman G et al (2010) Plasma vitamin D and mortality in older men: a community-based prospective cohort study. Am J Clin Nutr 92:841–848CrossRefGoogle Scholar
  33. 33.
    Dennis LK, Vanbeek MJ, Beane Freeman LE et al (2008) Sunburns and risk of cutaneous melanoma: does age matter? A comprehensive meta-analysis. Ann Epidemiol 18:614–627CrossRefGoogle Scholar
  34. 34.
    Gezondheidsraad (2008) Naar een toereikende inname van vitamine D. Available at:
  35. 35.
    Heaney RP, Holick MF (2011) Why the IOM recommendations for vitamin D are deficient. J Bone Miner Res 26(3):455–457CrossRefGoogle Scholar
  36. 36.
    Holick MF (2011) The IOM D-lemma. Public Health Nutr 14:939–941CrossRefGoogle Scholar
  37. 37.
    Luxwolda MF, Kuipers RS, Kema IP et al (2012) Traditionally living populations in East Africa have a mean serum 25-hydroxyvitamin D concentration of 115 nmol/l. Br J Nutr 23:1–5Google Scholar
  38. 38.
    Marlowe F (2002) Why the Hadza are still hunter-gatherers. Ethnicity, hunter-gatherers, and the “other”: association or assimilation in Africa. Smithsonian Institution Press, Washington, DC, pp 247–275Google Scholar
  39. 39.
    Biss K, Ho KJ, Mikkelson B et al (1971) Some unique biologic characteristics of the Masai of East Africa. N Engl J Med 284:694–699CrossRefGoogle Scholar
  40. 40.
    de Jong WH, Graham KS, van der Molen JC et al (2007) Plasma free metanephrine measurement using automated online solid-phase extraction HPLC tandem mass spectrometry. Clin Chem 53:1684–1693CrossRefGoogle Scholar
  41. 41.
    Maunsell Z, Wright DJ, Rainbow SJ (2005) Routine isotope-dilution liquid chromatography-tandem mass spectrometry assay for simultaneous measurement of the 25-hydroxy metabolites of vitamins D2 and D3. Clin Chem 51:1683–1690CrossRefGoogle Scholar
  42. 42.
    Kuratko CN, Salem N Jr (2009) Biomarkers of DHA status. Prostaglandins Leukot Essent Fatty Acids 81:111–118CrossRefGoogle Scholar
  43. 43.
    Muskiet FA, van Doormaal JJ, Martini IA et al (1983) Capillary gas chromatographic profiling of total long-chain fatty acids and cholesterol in biological materials. J Chromatogr 278:231–244CrossRefGoogle Scholar
  44. 44.
    Zittermann A (2003) Vitamin D in preventive medicine: are we ignoring the evidence? Br J Nutr 89:552–572CrossRefGoogle Scholar
  45. 45.
    Henry HL, Bouillon R, Norman AW et al (2010) 14th Vitamin D workshop consensus on vitamin D nutritional guidelines. J Steroid Biochem Mol Biol 121:4–6CrossRefGoogle Scholar
  46. 46.
    Taylor SN, Wagner CL, Hollis BW (2008) Vitamin D supplementation during lactation to support infant and mother. J Am Coll Nutr 27:690–701Google Scholar
  47. 47.
    Heaney RP (2005) The vitamin D requirement in health and disease. J Steroid Biochem Mol Biol 97:13–19CrossRefGoogle Scholar
  48. 48.
    Linhares ER, Jones DA, Round JM et al (1984) Effect of nutrition on vitamin D status: studies on healthy and poorly nourished Brazilian children. Am J Clin Nutr 39:625–630Google Scholar
  49. 49.
    Hintzpeter B, Mensink GB, Thierfelder W et al (2008) Vitamin D status and health correlates among German adults. Eur J Clin Nutr 62:1079–1089CrossRefGoogle Scholar
  50. 50.
    Bourre JM, Paquotte PM (2008) Contributions (in 2005) of marine and fresh water products (finfish and shellfish, seafood, wild and farmed) to the French dietary intakes of vitamins D and B12, selenium, iodine and docosahexaenoic acid: impact on public health. Int J Food Sci Nutr 59:491–501CrossRefGoogle Scholar
  51. 51.
    Nakamura K, Nashimoto M, Okuda Y et al (2002) Fish as a major source of vitamin D in the Japanese diet. Nutrition 18:415–416CrossRefGoogle Scholar
  52. 52.
    Hollis BW, Johnson D, Hulsey TC et al (2011) Vitamin D supplementation during pregnancy: double-blind, randomized clinical trial of safety and effectiveness. J Bone Miner Res 26:2341–2357CrossRefGoogle Scholar
  53. 53.
    Kuipers RS, Luxwolda MF, Sango WS et al (2011) Maternal DHA equilibrium during pregnancy and lactation is reached at an erythrocyte DHA content of 8 g/100 g fatty acids. J Nutr 141:418–427CrossRefGoogle Scholar
  54. 54.
    Luxwolda MF, Kuipers RS, Sango WS et al (2011) A maternal erythrocyte DHA content of approximately 6 g% is the DHA status at which intrauterine DHA biomagnifications turns into bioattenuation and postnatal infant DHA equilibrium is reached. Eur J Nutr [Epub ahead of print]Google Scholar
  55. 55.
    Park Y, Kim M (2011) Serum 25-hydroxyvitamin D concentrations are associated with erythrocyte levels of n-3 PUFA but not risk of CVD. Br J Nutr 106:1529–1534CrossRefGoogle Scholar
  56. 56.
    Bjorn LO, Wang T (2000) Vitamin D in an ecological context. Int J Circumpolar Health 59:26–32Google Scholar
  57. 57.
    Holick MF (2008) Vitamin D: a D-Lightful health perspectiv. Nutr Rev 66:S182–S194CrossRefGoogle Scholar
  58. 58.
    Dent CE, Gupta MM (1975) Plasma 25-hydroxyvitamin-D-levels during pregnancy in Caucasians and in vegetarian and non-vegetarian Asians. Lancet 2:1057–1060CrossRefGoogle Scholar
  59. 59.
    Salle BL, Delvin EE, Lapillonne A et al (2000) Perinatal metabolism of vitamin D. Am J Clin Nutr 71:1317S–1324SGoogle Scholar
  60. 60.
    Hillman LS, Slatopolsky E, Haddad JG (1978) Perinatal vitamin D metabolism. IV. Maternal and cord serum 24,25-dihydroxyvitamin D concentrations. J Clin Endocrinol Metab 47:1073–1077CrossRefGoogle Scholar
  61. 61.
    Brooke OG, Brown IR, Bone CD et al (1980) Vitamin D supplements in pregnant Asian women: effects on calcium status and fetal growth. Br Med J 280:751–754CrossRefGoogle Scholar
  62. 62.
    Cross NA, Hillman LS, Allen SH et al (1995) Calcium homeostasis and bone metabolism during pregnancy, lactation, and postweaning: a longitudinal study. Am J Clin Nutr 61:514–523Google Scholar
  63. 63.
    Ardawi MS, Nasrat HA, BA’Aqueel HS (1997) Calcium-regulating hormones and parathyroid hormone-related peptide in normal human pregnancy and postpartum: a longitudinal study. Eur J Endocrinol 137:402–409CrossRefGoogle Scholar
  64. 64.
    Gomme PT, Bertolini J (2004) Therapeutic potential of vitamin D-binding protein. Trends Biotechnol 22:340–345CrossRefGoogle Scholar
  65. 65.
    Hadden DR, McLaughlin C (2009) Normal and abnormal maternal metabolism during pregnancy. Semin Fetal Neonatal Med 14:66–71CrossRefGoogle Scholar
  66. 66.
    Novakovic B, Sibson M, Ng HK et al (2009) Placenta-specific methylation of the vitamin D 24-hydroxylase gene: implications for feedback autoregulation of active vitamin D levels at the fetomaternal interface. J Biol Chem 284:14838–14848CrossRefGoogle Scholar
  67. 67.
    Almeras L, Eyles D, Benech P et al (2007) Developmental vitamin D deficiency alters brain protein expression in the adult rat: implications for neuropsychiatric disorders. Proteomics 7:769–780CrossRefGoogle Scholar
  68. 68.
    Eyles DW, Feron F, Cui X et al (2009) Developmental vitamin D deficiency causes abnormal brain development. Psychoneuroendocrinology 34(Suppl 1):S247–S257CrossRefGoogle Scholar
  69. 69.
    Harvey L, Burne TH, McGrath JJ et al (2010) Developmental vitamin D3 deficiency induces alterations in immune organ morphology and function in adult offspring. J Steroid Biochem Mol Biol 121:239–242CrossRefGoogle Scholar
  70. 70.
    Belderbos ME, Houben ML, Wilbrink B et al (2011) Cord blood vitamin D deficiency is associated with respiratory syncytial virus bronchiolitis. Pediatrics 127:e1513–e1520CrossRefGoogle Scholar
  71. 71.
    Javaid MK, Crozier SR, Harvey NC et al (2006) Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: a longitudinal study. Lancet 367:36–43CrossRefGoogle Scholar
  72. 72.
    Hoogenboezem T, Degenhart HJ, de Muinck Keizer-Schrama SM et al (1989) Vitamin D metabolism in breast-fed infants and their mothers. Pediatr Res 25:623–628CrossRefGoogle Scholar
  73. 73.
    Holick MF, Binkley NC, Bischoff-Ferrari HA et al (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 96:1911–1930CrossRefGoogle Scholar
  74. 74.
    Hollis BW, Wagner CL (2004) Vitamin D requirements during lactation: high-dose maternal supplementation as therapy to prevent hypovitaminosis D for both the mother and the nursing infant. Am J Clin Nutr 80:1752S–1758SGoogle Scholar
  75. 75.
    Webb AR (2006) Who, what, where and when-influences on cutaneous vitamin D synthesis. Prog Biophys Mol Biol 92:17–25CrossRefGoogle Scholar
  76. 76.
    Zittermann A, Pilz S, Borgermann J et al (2011) Calcium supplementation and vitamin D: a trigger for adverse cardiovascular events? Future Cardiol 7:725–727CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Martine F. Luxwolda
    • 1
  • Remko S. Kuipers
    • 1
  • Ido P. Kema
    • 1
  • E. van der Veer
    • 1
  • D. A. Janneke Dijck-Brouwer
    • 1
  • Frits A. J. Muskiet
    • 1
  1. 1.Laboratory Medicine, Room Y 3.181University Medical Center Groningen (UMCG)GroningenThe Netherlands

Personalised recommendations