European Journal of Nutrition

, Volume 51, Issue 8, pp 899–907 | Cite as

Regulation of antimicrobial peptide gene expression by nutrients and by-products of microbial metabolism

  • Yan Campbell
  • Mary L. Fantacone
  • Adrian F. Gombart



Antimicrobial peptides (AMPs) are synthesized and secreted by immune and epithelial cells that are constantly exposed to environmental microbes. AMPs are essential for barrier defense, and deficiencies lead to increased susceptibility to infection. In addition to their ability to disrupt the integrity of bacterial, viral and fungal membranes, AMPs bind lipopolysaccharides, act as chemoattractants for immune cells and bind to cellular receptors and modulate the expression of cytokines and chemokines. These additional biological activities may explain the role of AMPs in inflammatory diseases and cancer. Modulating the endogenous expression of AMPs offers potential therapeutic treatments for infection and disease.


The present review examines the published data from both in vitro and in vivo studies reporting the effects of nutrients and by-products of microbial metabolism on the expression of antimicrobial peptide genes in order to highlight an emerging appreciation for the role of dietary compounds in modulating the innate immune response.


Vitamins A and D, dietary histone deacetylases and by-products of intestinal microbial metabolism (butyrate and secondary bile acids) have been found to regulate the expression of AMPs in humans. Vitamin D deficiency correlates with increased susceptibility to infection, and supplementation studies indicate an improvement in defense against infection. Animal and human clinical studies with butyrate indicate that increasing expression of AMPs in the colon protects against infection.


These findings suggest that diet and/or consumption of nutritional supplements may be used to improve and/or modulate immune function. In addition, by-products of gut microbe metabolism could be important for communicating with intestinal epithelial and immune cells, thus affecting the expression of AMPs. This interaction may help establish a mucosal barrier to prevent invasion of the intestinal epithelium by either mutualistic or pathogenic microorganisms.


Antimicrobial peptide Innate immune Vitamin Dietary Supplement Infection 



We thank members of the laboratory for critically reading this manuscript. This work was supported by the National Institute of Allergy and Infectious Diseases at the National Institutes of Health [5R01AI065604 to A.F.G.].


  1. 1.
    Zanetti M (2005) The role of cathelicidins in the innate host defenses of mammals. Curr Issues Mol Biol 7:179–196Google Scholar
  2. 2.
    Ganz T, Lehrer RI (1995) Defensins. Pharmacol Ther 66:191–205CrossRefGoogle Scholar
  3. 3.
    Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720. doi: 10.1038/nri1180 CrossRefGoogle Scholar
  4. 4.
    Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, Pestonjamasp V, Piraino J, Huttner K, Gallo RL (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414:454–457. doi: 10.1038/35106587 CrossRefGoogle Scholar
  5. 5.
    Papagianni M (2003) Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotechnol Adv 21:465–499CrossRefGoogle Scholar
  6. 6.
    Zanetti M, Gennaro R, Romeo D (1995) Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett 374:1–5CrossRefGoogle Scholar
  7. 7.
    Cowland JB, Johnsen AH, Borregaard N (1995) hCAP-18, a cathelin/pro-bactenecin-like protein of human neutrophil specific granules. FEBS Lett 368:173–176CrossRefGoogle Scholar
  8. 8.
    Andersson E, Sorensen OE, Frohm B, Borregaard N, Egesten A, Malm J (2002) Isolation of human cationic antimicrobial protein-18 from seminal plasma and its association with prostasomes. Hum Reprod 17:2529–2534CrossRefGoogle Scholar
  9. 9.
    Murakami M, Ohtake T, Dorschner RA, Gallo RL (2002) Cathelicidin antimicrobial peptides are expressed in salivary glands and saliva. J Dent Res 81:845–850CrossRefGoogle Scholar
  10. 10.
    Murakami M, Ohtake T, Dorschner RA, Schittek B, Garbe C, Gallo RL (2002) Cathelicidin anti-microbial peptide expression in sweat, an innate defense system for the skin. J Invest Dermatol 119:1090–1095. doi: 10.1046/j.1523-1747.2002.19507.x CrossRefGoogle Scholar
  11. 11.
    Agerberth B, Gudmundsson GH (2006) Host antimicrobial defence peptides in human disease. Curr Top Microbiol Immunol 306:67–90CrossRefGoogle Scholar
  12. 12.
    Gombart AF (2009) The vitamin D-antimicrobial peptide pathway and its role in protection against infection. Future Microbiol 4:1151–1165. doi: 10.2217/fmb.09.87 CrossRefGoogle Scholar
  13. 13.
    Sorensen O, Cowland JB, Askaa J, Borregaard N (1997) An ELISA for hCAP-18, the cathelicidin present in human neutrophils and plasma. J Immunol Methods 206:53–59CrossRefGoogle Scholar
  14. 14.
    Larrick JW, Hirata M, Balint RF, Lee J, Zhong J, Wright SC (1995) Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun 63:1291–1297Google Scholar
  15. 15.
    Nagaoka I, Hirota S, Niyonsaba F, Hirata M, Adachi Y, Tamura H, Heumann D (2001) Cathelicidin family of antibacterial peptides CAP18 and CAP11 inhibit the expression of TNF-alpha by blocking the binding of LPS to CD14(+) cells. J Immunol 167:3329–3338Google Scholar
  16. 16.
    Mookherjee N, Brown KL, Bowdish DM, Doria S, Falsafi R, Hokamp K, Roche FM, Mu R, Doho GH, Pistolic J, Powers JP, Bryan J, Brinkman FS, Hancock RE (2006) Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J Immunol 176:2455–2464Google Scholar
  17. 17.
    Kirikae T, Hirata M, Yamasu H, Kirikae F, Tamura H, Kayama F, Nakatsuka K, Yokochi T, Nakano M (1998) Protective effects of a human 18-kilodalton cationic antimicrobial protein (CAP18)-derived peptide against murine endotoxemia. Infect Immun 66:1861–1868Google Scholar
  18. 18.
    Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock RE (2002) The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol 169:3883–3891Google Scholar
  19. 19.
    Gombart AF, Bhan I, Borregaard N, Tamez H, Camargo CA Jr, Koeffler HP, Thadhani R (2009) Low plasma level of cathelicidin antimicrobial peptide (hCAP18) predicts increased infectious disease mortality in patients undergoing hemodialysis. Clin Infect Dis 48:418–424. doi: 10.1086/596314 CrossRefGoogle Scholar
  20. 20.
    Diamond G, Bevins CL (1998) beta-Defensins: endogenous antibiotics of the innate host defense response. Clin Immunol Immunopathol 88:221–225CrossRefGoogle Scholar
  21. 21.
    Quayle AJ, Porter EM, Nussbaum AA, Wang YM, Brabec C, Yip KP, Mok SC (1998) Gene expression, immunolocalization, and secretion of human defensin-5 in human female reproductive tract. Am J Pathol 152:1247–1258Google Scholar
  22. 22.
    Yang D, Biragyn A, Kwak LW, Oppenheim JJ (2002) Mammalian defensins in immunity: more than just microbicidal. Trends Immunol 23:291–296CrossRefGoogle Scholar
  23. 23.
    Duits LA, Ravensbergen B, Rademaker M, Hiemstra PS, Nibbering PH (2002) Expression of beta-defensin 1 and 2 mRNA by human monocytes, macrophages and dendritic cells. Immunology 106:517–525CrossRefGoogle Scholar
  24. 24.
    Harder J, Bartels J, Christophers E, Schroder JM (2001) Isolation and characterization of human beta -defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276:5707–5713. doi: 10.1074/jbc.M008557200 CrossRefGoogle Scholar
  25. 25.
    Chen H, Xu Z, Peng L, Fang X, Yin X, Xu N, Cen P (2006) Recent advances in the research and development of human defensins. Peptides 27:931–940. doi: 10.1016/j.peptides.2005.08.018 CrossRefGoogle Scholar
  26. 26.
    Joly S, Maze C, McCray PB Jr, Guthmiller JM (2004) Human beta-defensins 2 and 3 demonstrate strain-selective activity against oral microorganisms. J Clin Microbiol 42:1024–1029CrossRefGoogle Scholar
  27. 27.
    Zaalouk TK, Bajaj-Elliott M, George JT, McDonald V (2004) Differential regulation of beta-defensin gene expression during Cryptosporidium parvum infection. Infect Immun 72:2772–2779CrossRefGoogle Scholar
  28. 28.
    Underwood MA, Bevins CL (2010) Defensin-barbed innate immunity: clinical associations in the pediatric population. Pediatrics 125:1237–1247. doi: 10.1542/peds.2009-3289 CrossRefGoogle Scholar
  29. 29.
    Bikle D (2009) Nonclassic actions of vitamin D. J Clin Endocrinol Metab 94:26–34. doi: 10.1210/jc.2008-1454 CrossRefGoogle Scholar
  30. 30.
    Wang TT, Nestel FP, Bourdeau V, Nagai Y, Wang Q, Liao J, Tavera-Mendoza L, Lin R, Hanrahan JW, Mader S, White JH (2004) Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol 173:2909–2912Google Scholar
  31. 31.
    Weber G, Heilborn JD, Chamorro Jimenez CI, Hammarsjo A, Torma H, Stahle M (2005) Vitamin D induces the antimicrobial protein hCAP18 in human skin. J Invest Dermatol 124:1080–1082. doi: 10.1111/j.0022-202X.2005.23687.x CrossRefGoogle Scholar
  32. 32.
    Gombart AF, O’Kelly J, Saito T, Koeffler HP (2007) Regulation of the CAMP gene by 1,25(OH)2D3 in various tissues. J Steroid Biochem Mol Biol 103:552–557. doi: 10.1016/j.jsbmb.2006.12.095 CrossRefGoogle Scholar
  33. 33.
    Gombart AF, Borregaard N, Koeffler HP (2005) Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J 19:1067–1077. doi: 10.1096/fj.04-3284com CrossRefGoogle Scholar
  34. 34.
    Gombart A, Saito T, Koeffler HP (2009) Exaptation of an ancient Alu short interspersed element provides a highly conserved vitamin D-mediated innate immune response in humans and primates. BMC Genomics 10:321CrossRefGoogle Scholar
  35. 35.
    Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, Ochoa MT, Schauber J, Wu K, Meinken C, Kamen DL, Wagner M, Bals R, Steinmeyer A, Zugel U, Gallo RL, Eisenberg D, Hewison M, Hollis BW, Adams JS, Bloom BR, Modlin RL (2006) Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311:1770–1773. doi: 10.1126/science.1123933 CrossRefGoogle Scholar
  36. 36.
    Schauber J, Dorschner RA, Coda AB, Buchau AS, Liu PT, Kiken D, Helfrich YR, Kang S, Elalieh HZ, Steinmeyer A, Zugel U, Bikle DD, Modlin RL, Gallo RL (2007) Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism. J Clin Invest 117:803–811. doi: 10.1172/JCI30142 CrossRefGoogle Scholar
  37. 37.
    Yuk JM, Shin DM, Lee HM, Yang CS, Jin HS, Kim KK, Lee ZW, Lee SH, Kim JM, Jo EK (2009) Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe 6:231–243. doi: 10.1016/j.chom.2009.08.004 CrossRefGoogle Scholar
  38. 38.
    Liu PT, Schenk M, Walker VP, Dempsey PW, Kanchanapoomi M, Wheelwright M, Vazirnia A, Zhang X, Steinmeyer A, Zugel U, Hollis BW, Cheng G, Modlin RL (2009) Convergence of IL-1beta and VDR activation pathways in human TLR2/1-induced antimicrobial responses. PLoS One 4:e5810. doi: 10.1371/journal.pone.0005810 CrossRefGoogle Scholar
  39. 39.
    Voss E, Wehkamp J, Wehkamp K, Stange EF, Schroder JM, Harder J (2006) NOD2/CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2. J Biol Chem 281:2005–2011. doi: 10.1074/jbc.M511044200 CrossRefGoogle Scholar
  40. 40.
    Wang TT, Dabbas B, Laperriere D, Bitton AJ, Soualhine H, Tavera-Mendoza LE, Dionne S, Servant MJ, Bitton A, Seidman EG, Mader S, Behr MA, White JH (2010) Direct and indirect induction by 1,25-dihydroxyvitamin D3 of the NOD2/CARD15-defensin beta2 innate immune pathway defective in Crohn disease. J Biol Chem 285:2227–2231. doi: 10.1074/jbc.C109.071225 CrossRefGoogle Scholar
  41. 41.
    Dai X, Sayama K, Tohyama M, Shirakata Y, Hanakawa Y, Tokumaru S, Yang L, Hirakawa S, Hashimoto K (2010) PPARgamma mediates innate immunity by regulating the 1alpha,25-dihydroxyvitamin D3 induced hBD-3 and cathelicidin in human keratinocytes. J Dermatol Sci 60:179–186. doi: 10.1016/j.jdermsci.2010.09.008 CrossRefGoogle Scholar
  42. 42.
    Peric M, Koglin S, Dombrowski Y, Gross K, Bradac E, Buchau A, Steinmeyer A, Zugel U, Ruzicka T, Schauber J (2009) Vitamin D analogs differentially control antimicrobial peptide/“alarmin” expression in psoriasis. PLoS One 4:e6340. doi: 10.1371/journal.pone.0006340 CrossRefGoogle Scholar
  43. 43.
    Chiang JY (2009) Bile acids: regulation of synthesis. J Lipid Res 50:1955–1966. doi: 10.1194/jlr.R900010-JLR200 CrossRefGoogle Scholar
  44. 44.
    Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B (1999) Identification of a nuclear receptor for bile acids. Science 284:1362–1365CrossRefGoogle Scholar
  45. 45.
    D’Aldebert E, Biyeyeme Bi Mve MJ, Mergey M, Wendum D, Firrincieli D, Coilly A, Fouassier L, Corpechot C, Poupon R, Housset C, Chignard N (2009) Bile salts control the antimicrobial peptide cathelicidin through nuclear receptors in the human biliary epithelium. Gastroenterology 136:1435–1443. doi: 10.1053/j.gastro.2008.12.040 CrossRefGoogle Scholar
  46. 46.
    Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, Haussler MR, Mangelsdorf DJ (2002) Vitamin D receptor as an intestinal bile acid sensor. Science 296:1313–1316. doi: 10.1126/science.1070477 CrossRefGoogle Scholar
  47. 47.
    Prawitt J, Caron S, Staels B (2011) Bile acid metabolism and the pathogenesis of type 2 diabetes. Curr Diab Rep 11:160–166. doi: 10.1007/s11892-011-0187-x CrossRefGoogle Scholar
  48. 48.
    Reschly EJ, Krasowski MD (2006) Evolution and function of the NR1I nuclear hormone receptor subfamily (VDR, PXR, and CAR) with respect to metabolism of xenobiotics and endogenous compounds. Curr Drug Metab 7:349–365CrossRefGoogle Scholar
  49. 49.
    Peric M, Koglin S, Dombrowski Y, Gross K, Bradac E, Ruzicka T, Schauber J (2009) VDR and MEK-ERK dependent induction of the antimicrobial peptide cathelicidin in keratinocytes by lithocholic acid. Mol Immunol 46:3183–3187. doi: 10.1016/j.molimm.2009.08.010 CrossRefGoogle Scholar
  50. 50.
    Termen S, Tollin M, Rodriguez E, Sveinsdottir SH, Johannesson B, Cederlund A, Sjovall J, Agerberth B, Gudmundsson GH (2008) PU.1 and bacterial metabolites regulate the human gene CAMP encoding antimicrobial peptide LL-37 in colon epithelial cells. Mol Immunol 45:3947–3955. doi: 10.1016/j.molimm.2008.06.020 CrossRefGoogle Scholar
  51. 51.
    Ishizawa M, Matsunawa M, Adachi R, Uno S, Ikeda K, Masuno H, Shimizu M, Iwasaki K, Yamada S, Makishima M (2008) Lithocholic acid derivatives act as selective vitamin D receptor modulators without inducing hypercalcemia. J Lipid Res 49:763–772. doi: 10.1194/jlr.M700293-JLR200 CrossRefGoogle Scholar
  52. 52.
    Karagiannis TC, El-Osta A (2006) The paradox of histone deacetylase inhibitor-mediated modulation of cellular responses to radiation. Cell Cycle 5:288–295CrossRefGoogle Scholar
  53. 53.
    Islam D, Bandholtz L, Nilsson J, Wigzell H, Christensson B, Agerberth B, Gudmundsson G (2001) Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat Med 7:180–185. doi: 10.1038/84627 CrossRefGoogle Scholar
  54. 54.
    Raqib R, Sarker P, Bergman P, Ara G, Lindh M, Sack DA, Nasirul Islam KM, Gudmundsson GH, Andersson J, Agerberth B (2006) Improved outcome in shigellosis associated with butyrate induction of an endogenous peptide antibiotic. Proc Natl Acad Sci USA 103:9178–9183. doi: 10.1073/pnas.0602888103 CrossRefGoogle Scholar
  55. 55.
    Steinmann J, Halldorsson S, Agerberth B, Gudmundsson GH (2009) Phenylbutyrate induces antimicrobial peptide expression. Antimicrob Agents Chemother 53:5127–5133. doi: 10.1128/AAC.00818-09 CrossRefGoogle Scholar
  56. 56.
    Sarker P, Ahmed S, Tiash S, Rekha RS, Stromberg R, Andersson J, Bergman P, Gudmundsson GH, Agerberth B, Raqib R (2011) Phenylbutyrate counteracts Shigella mediated downregulation of cathelicidin in rabbit lung and intestinal epithelia: a potential therapeutic strategy. PLoS One 6:e20637. doi: 10.1371/journal.pone.0020637 CrossRefGoogle Scholar
  57. 57.
    Schauber J, Dorschner RA, Yamasaki K, Brouha B, Gallo RL (2006) Control of the innate epithelial antimicrobial response is cell-type specific and dependent on relevant microenvironmental stimuli. Immunology 118:509–519. doi: 10.1111/j.1365-2567.2006.02399.x Google Scholar
  58. 58.
    Schwab M, Reynders V, Loitsch S, Steinhilber D, Schroder O, Stein J (2008) The dietary histone deacetylase inhibitor sulforaphane induces human beta-defensin-2 in intestinal epithelial cells. Immunology 125:241–251. doi: 10.1111/j.1365-2567.2008.02834.x CrossRefGoogle Scholar
  59. 59.
    Yin L, Chung WO (2011) Epigenetic regulation of human beta-defensin 2 and CC chemokine ligand 20 expression in gingival epithelial cells in response to oral bacteria. Mucosal Immunol 4:409–419. doi: 10.1038/mi.2010.83 CrossRefGoogle Scholar
  60. 60.
    Nian H, Delage B, Ho E, Dashwood RH (2009) Modulation of histone deacetylase activity by dietary isothiocyanates and allyl sulfides: studies with sulforaphane and garlic organosulfur compounds. Environ Mol Mutagen 50:213–221. doi: 10.1002/em.20454 CrossRefGoogle Scholar
  61. 61.
    Hall JA, Grainger JR, Spencer SP, Belkaid Y (2011) The role of retinoic acid in tolerance and immunity. Immunity 35:13–22. doi: 10.1016/j.immuni.2011.07.002 CrossRefGoogle Scholar
  62. 62.
    Kamashev D, Vitoux D, De The H (2004) PML-RARA-RXR oligomers mediate retinoid and rexinoid/cAMP cross-talk in acute promyelocytic leukemia cell differentiation. J Exp Med 199:1163–1174. doi: 10.1084/jem.20032226 CrossRefGoogle Scholar
  63. 63.
    Wu H, Zhang G, Minton JE, Ross CR, Blecha F (2000) Regulation of cathelicidin gene expression: induction by lipopolysaccharide, interleukin-6, retinoic acid, and Salmonella enterica serovar typhimurium infection. Infect Immun 68:5552–5558CrossRefGoogle Scholar
  64. 64.
    Elloumi HZ, Holland SM (2008) Complex regulation of human cathelicidin gene expression: novel splice variants and 5′UTR negative regulatory element. Mol Immunol 45:204–217. doi: 10.1016/j.molimm.2007.04.023 CrossRefGoogle Scholar
  65. 65.
    Harder J, Meyer-Hoffert U, Wehkamp K, Schwichtenberg L, Schroder JM (2004) Differential gene induction of human beta-defensins (hBD-1, -2, -3, and -4) in keratinocytes is inhibited by retinoic acid. J Invest Dermatol 123:522–529. doi: 10.1111/j.0022-202X.2004.23234.x CrossRefGoogle Scholar
  66. 66.
    Schule R, Rangarajan P, Yang N, Kliewer S, Ransone LJ, Bolado J, Verma IM, Evans RM (1991) Retinoic acid is a negative regulator of AP-1-responsive genes. Proc Natl Acad Sci USA 88:6092–6096CrossRefGoogle Scholar
  67. 67.
    Wang N, Su Q, Boeckh-Herwig S, Yaneva M, Tempst P (2004) Delayed-late activation of a myeloid defensin minimal promoter by retinoids and inflammatory mediators. Leuk Res 28:879–889. doi: 10.1016/j.leukres.2003.12.005 CrossRefGoogle Scholar
  68. 68.
    Xiao W, Hsu YP, Ishizaka A, Kirikae T, Moss RB (2005) Sputum cathelicidin, urokinase plasminogen activation system components, and cytokines discriminate cystic fibrosis, COPD, and asthma inflammation. Chest 128:2316–2326. doi: 10.1378/chest.128.4.2316 CrossRefGoogle Scholar
  69. 69.
    Jeng L, Yamshchikov AV, Judd SE, Blumberg HM, Martin GS, Ziegler TR, Tangpricha V (2009) Alterations in vitamin D status and anti-microbial peptide levels in patients in the intensive care unit with sepsis. J Transl Med 7:28. doi: 10.1186/1479-5876-7-28 CrossRefGoogle Scholar
  70. 70.
    Hata TR, Kotol P, Jackson M, Nguyen M, Paik A, Udall D, Kanada K, Yamasaki K, Alexandrescu D, Gallo RL (2008) Administration of oral vitamin D induces cathelicidin production in atopic individuals. J Allergy Clin Immunol 122:829–831. doi: 10.1016/j.jaci.2008.08.020 CrossRefGoogle Scholar
  71. 71.
    Hertting O, Holm A, Luthje P, Brauner H, Dyrdak R, Jonasson AF, Wiklund P, Chromek M, Brauner A (2010) Vitamin D induction of the human antimicrobial Peptide cathelicidin in the urinary bladder. PLoS One 5:e15580. doi: 10.1371/journal.pone.0015580 CrossRefGoogle Scholar
  72. 72.
    Ginde AA, Mansbach JM, Camargo CA Jr (2009) Vitamin D, respiratory infections, and asthma. Curr Allergy Asthma Rep 9:81–87CrossRefGoogle Scholar
  73. 73.
    Urashima M, Segawa T, Okazaki M, Kurihara M, Wada Y, Ida H (2010) Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Am J Clin Nutr 91:1255–1260. doi: 10.3945/ajcn.2009.29094 CrossRefGoogle Scholar
  74. 74.
    Sabetta JR, DePetrillo P, Cipriani RJ, Smardin J, Burns LA, Landry ML (2010) Serum 25-hydroxyvitamin d and the incidence of acute viral respiratory tract infections in healthy adults. PLoS One 5:e11088. doi: 10.1371/journal.pone.0011088 CrossRefGoogle Scholar
  75. 75.
    Martineau AR, Timms PM, Bothamley GH, Hanifa Y, Islam K, Claxton AP, Packe GE, Moore-Gillon JC, Darmalingam M, Davidson RN, Milburn HJ, Baker LV, Barker RD, Woodward NJ, Venton TR, Barnes KE, Mullett CJ, Coussens AK, Rutterford CM, Mein CA, Davies GR, Wilkinson RJ, Nikolayevskyy V, Drobniewski FA, Eldridge SM, Griffiths CJ (2011) High-dose vitamin D(3) during intensive-phase antimicrobial treatment of pulmonary tuberculosis: a double-blind randomised controlled trial. Lancet 377:242–250. doi: 10.1016/S0140-6736(10)61889-2 CrossRefGoogle Scholar
  76. 76.
    Li-Ng M, Aloia JF, Pollack S, Cunha BA, Mikhail M, Yeh J, Berbari N (2009) A randomized controlled trial of vitamin D3 supplementation for the prevention of symptomatic upper respiratory tract infections. Epidemiol Infect 137:1396–1404. doi: 10.1017/S0950268809002404 CrossRefGoogle Scholar
  77. 77.
    Roth DE, Jones AB, Prosser C, Robinson JL, Vohra S (2009) Vitamin D status is not associated with the risk of hospitalization for acute bronchiolitis in early childhood. Eur J Clin Nutr 63:297–299. doi: 10.1038/sj.ejcn.1602946 CrossRefGoogle Scholar
  78. 78.
    Wejse C, Gomes VF, Rabna P, Gustafson P, Aaby P, Lisse IM, Andersen PL, Glerup H, Sodemann M (2009) Vitamin D as supplementary treatment for tuberculosis: a double-blind, randomized, placebo-controlled trial. Am J Respir Crit Care Med 179:843–850. doi: 10.1164/rccm.200804-567OC CrossRefGoogle Scholar
  79. 79.
    Raqib R, Sarker P, Mily A, Alam NH, Arifuzzaman AS, Rekha RS, Andersson J, Gudmundsson GH, Cravioto A, Agerberth B (2012) Efficacy of sodium butyrate adjunct therapy in shigellosis: a randomized, double-blind, placebo controlled clinical trial. BMC Infect Dis 12:111. doi: 10.1186/1471-2334-12-111 CrossRefGoogle Scholar
  80. 80.
    Jurutka PW, Bartik L, Whitfield GK, Mathern DR, Barthel TK, Gurevich M, Hsieh JC, Kaczmarska M, Haussler CA, Haussler MR (2007) Vitamin D receptor: key roles in bone mineral pathophysiology, molecular mechanism of action, and novel nutritional ligands. J Bone Miner Res 22(Suppl 2):V2–V10. doi: 10.1359/jbmr.07s216 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Yan Campbell
    • 1
  • Mary L. Fantacone
    • 1
  • Adrian F. Gombart
    • 1
  1. 1.Department of Biochemistry and Biophysics, Linus Pauling InstituteOregon State UniversityCorvallisUSA

Personalised recommendations