European Journal of Nutrition

, Volume 52, Issue 2, pp 625–635 | Cite as

Disturbed eating at high altitude: influence of food preferences, acute mountain sickness and satiation hormones

  • Isabelle Aeberli
  • Annina Erb
  • Kerstin Spliethoff
  • Daniela Meier
  • Oliver Götze
  • Heiko Frühauf
  • Mark Fox
  • Graham S. Finlayson
  • Max Gassmann
  • Kaspar Berneis
  • Marco Maggiorini
  • Wolfgang Langhans
  • Thomas A. Lutz
Original Contribution

Abstract

Purpose

Hypoxia has been shown to reduce energy intake and lead to weight loss, but the underlying mechanisms are unclear. The aim was therefore to assess changes in eating after rapid ascent to 4,559 m and to investigate to what extent hypoxia, acute mountain sickness (AMS), food preferences and satiation hormones influence eating behavior.

Methods

Participants (n = 23) were studied at near sea level (Zurich (ZH), 446 m) and on two days after rapid ascent to Capanna Margherita (MG) at 4,559 m (MG2 and MG4). Changes in appetite, food preferences and energy intake in an ad libitum meal were assessed. Plasma concentrations of cholecystokinin, peptide tyrosine–tyrosine, gastrin, glucagon and amylin were measured. Peripheral oxygen saturation (SpO2) was monitored, and AMS assessed using the Lake Louis score.

Results

Energy intake from the ad libitum meal was reduced on MG2 compared to ZH (643 ± 308 vs. 952 ± 458 kcal, p = 0.001), but was similar to ZH on MG4 (890 ± 298 kcal). Energy intake on all test days was correlated with hunger/satiety scores prior to the meal and AMS scores on MG2 but not with SpO2 on any of the 3 days. Liking for high-fat foods before a meal predicted subsequent energy intake on all days. None of the satiation hormones showed significant differences between the 3 days.

Conclusion

Reduced energy intake after rapid ascent to high altitude is associated with AMS severity. This effect was not directly associated with hypoxia or changes in gastrointestinal hormones. Other peripheral and central factors appear to reduce food intake at high altitude.

Keywords

Hypoxia Dietary intake Food preferences High altitude Acute mountain sickness 

Notes

Acknowledgments

We would like to thank all the volunteers for their cooperation in this ambitious study. Further thanks go to Prof. Christoph Beglinger, University Hospital Basel and to Barbara Schneider, University Hospital Zurich for their support with sample analysis. This study was supported by two Cooperative Project Grants (coordinated by MM and TAL) by the Zurich Centre for Integrative Human Physiology, Zurich, Switzerland.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bailey DM, Davies B, Milledge JS, Richards M, Williams SR, Jordinson M, Calam J (2000) Elevated plasma cholecystokinin at high altitude: metabolic implications for the anorexia of acute mountain sickness. High Alt Med Biol 1:9–23. doi: 10.1089/152702900320649 CrossRefGoogle Scholar
  2. 2.
    Berridge KC, Flynn FW, Schulkin J, Grill HJ (1984) Sodium depletion enhances salt palatability in rats. Behav Neurosci 98:652–660CrossRefGoogle Scholar
  3. 3.
    Budweiser S, Heinemann F, Meyer K, Wild PJ, Pfeifer M (2006) Weight gain in cachectic COPD patients receiving noninvasive positive-pressure ventilation. Respir Care 51:126–132Google Scholar
  4. 4.
    Butterfield GE, Gates J, Fleming S, Brooks GA, Sutton JR, Reeves JT (1992) Increased energy-intake minimizes weight-loss in men at high-altitude. J Appl Physiol 72:1741–1748Google Scholar
  5. 5.
    Chen KT, Chen YY, Wu HJ, Chang CK, Lee WT, Lu YY, Liu CC, Yang RS, Lin JC (2008) Decreased anaerobic performance and hormone adaptation after expedition to Peak Lenin. Chin Med J 121:2229–2233Google Scholar
  6. 6.
    Chen XQ, Dong J, Niu CY, Fan JM, Du JZ (2007) Effects of hypoxia on glucose, insulin, glucagon, and modulation by corticotropin-releasing factor receptor type 1 in the rat. Endocrinology 148:3271–3278. doi: 10.1210/En.2006-1224 CrossRefGoogle Scholar
  7. 7.
    Engelen MPKJ, Schols AMWJ, Baken WC, Wesseling GJ, Wouters EFM (1994) Nutritional depletion in relation to respiratory and peripheral skeletal muscle function in out-patients with COPD. Eur Respir J 7:1793–1797CrossRefGoogle Scholar
  8. 8.
    Ettinger RH, Staddon JER (1982) Decreased feeding associated with acute-hypoxia in rats. Physiol Behav 29:455–458CrossRefGoogle Scholar
  9. 9.
    Finlayson G, King N, Blundell JE (2007) Is it possible to dissociate ‘liking’ and ‘wanting’ for foods in humans? A novel experimental procedure. Physiol Behav 90:36–42. doi: 10.1016/j.physbeh.2006.08.020 CrossRefGoogle Scholar
  10. 10.
    Geary N (1990) Pancreatic glucagon signals postprandial satiety. Neurosci Biobehav Rev 14:323–338CrossRefGoogle Scholar
  11. 11.
    Geary N, Lesauter J, Noh U (1993) Glucagon acts in the liver to control spontaneous meal size in rats. Am J Physiol 264:R116–R122Google Scholar
  12. 12.
    Gibson RS (2005) Principles of nutritional assessment. Oxford University Press, New YorkGoogle Scholar
  13. 13.
    Glassford AJ, Yue P, Sheikh AY, Chun HJ, Zarafshar S, Chan DA, Reaven GM, Quertermous T, Tsao PS (2007) HIF-1 regulates hypoxia- and insulin-induced expression of apelin in adipocytes. Am J Physiol Endocrinol Metab 293:E1590–E1596. doi: 10.1152/ajpendo.00490.2007 CrossRefGoogle Scholar
  14. 14.
    Guilland JC, Klepping J (1985) Nutritional alterations at high-altitude in man. Eur J Appl Physiol 54:517–523CrossRefGoogle Scholar
  15. 15.
    Hannon JP, Klain GJ, Sudman DM, Sullivan FJ (1976) Nutritional aspects of high-altitude exposure in women. Am J Clin Nutr 29:604–613Google Scholar
  16. 16.
    Harris JA, Benedict FG (1918) A biometric study of human basal metabolism. Proc Nat Acad Sci USA 4:370–373CrossRefGoogle Scholar
  17. 17.
    Langhans W, Pantel K, Muller-Schell W, Eggenberger E, Scharrer E (1984) Hepatic handling of pancreatic glucagon and glucose during meals in rats. Am J Physiol 247:R827–R832Google Scholar
  18. 18.
    Loeppky JA, Icenogle MV, Maes D, Riboni K, Hinghofer-Szalkay H, Roach RC (2005) Early fluid retention and severe acute mountain sickness. J Appl Physiol 98:591–597. doi: 10.1152/Japplphysiol.00527.2004 CrossRefGoogle Scholar
  19. 19.
    Lutter M, Nestler EJ (2009) Homeostatic and hedonic signals interact in the regulation of food intake. J Nutr 139:629–632. doi: 10.3945/jn.108.097618 CrossRefGoogle Scholar
  20. 20.
    Lutz TA (2010) The role of amylin in the control of energy homeostasis. Am J Physiol Regul Integr Comp Physiol 298:R1475–R1484. doi: 10.1152/Ajpregu.00703.2009 CrossRefGoogle Scholar
  21. 21.
    Macdonald JH, Oliver SJ, Hillyer K, Sanders S, Smith Z, Williams C, Yates D, Ginnever H, Scanlon E, Roberts E, Murphy D, Lawley J, Chichester E (2009) Body composition at high altitude: a randomized placebo-controlled trial of dietary carbohydrate supplementation. Am J Clin Nutr 90:1193–1202. doi: 10.3945/ajcn.2009.28075 CrossRefGoogle Scholar
  22. 22.
    Maggiorini M (2010) Prevention and treatment of high-altitude pulmonary edema. Prog Cardiovasc Dis 52:500–506. doi: 10.1016/j.pcad.2010.03.001 CrossRefGoogle Scholar
  23. 23.
    Maggiorini M, Muller A, Hofstetter D, Bartsch P, Oelz O (1998) Assessment of acute mountain sickness by different score protocols in the Swiss Alps. Aviat Space Environ Med 69:1186–1192Google Scholar
  24. 24.
    Maggiorini M, Muller A, Hofstetter D, Bartsch P, Oelz O (1998) Assessment of acute mountain sickness by different score protocols in the Swiss Alps. Aviat Space Environ Med 69:1186–1192Google Scholar
  25. 25.
    Major GC, Doucet E (2004) Energy intake during a typical Himalayan trek. High Alt Med Biol 5:355–363CrossRefGoogle Scholar
  26. 26.
    Oelz O, Maggiorini M, Ritter M, Noti C, Waber U, Vock P, Bartsch P (1992) Pathophysiology, prevention and therapy of altitude pulmonary edema. Schweiz Med Wochenschr 122:1151–1158Google Scholar
  27. 27.
    Premavalli KS, Wadikar DD, Nanjappa C (2009) Comparison of the acceptability ratings of appetizers under laboratory, base level and high altitude field conditions. Appetite 53:127–130. doi: 10.1016/j.appet.2009.05.002 CrossRefGoogle Scholar
  28. 28.
    Roach RC, Bärtsch P, Hackett PH, Oelz O (1993) The Lake Louise AMS Scoring Consensus Committee. The Lake Louise acute mountain sickness scoring system. In: Sutton JR, Houtson CS, Coates G (eds) Hypoxia and molecular medicine. Queen City Printers Inc, Burlington, VT, pp 272–274Google Scholar
  29. 29.
    Rose MS, Houston CS, Fulco CS, Coates G, Sutton JR, Cymerman A (1988) Operation Everest. 2. Nutrition and body-composition. J Appl Physiol 65:2545–2551Google Scholar
  30. 30.
    Schoene RB (2008) Illnesses at high altitude. Chest 134:402–416. doi: 10.1378/chest.07-0561 CrossRefGoogle Scholar
  31. 31.
    Singh SB, Sharma A, Sharma KN, Selvamurthy W (1996) Effect of high-altitude hypoxia on feeding responses and hedonic matrix in rats. J Appl Physiol 80:1133–1137Google Scholar
  32. 32.
    Snyder EM, Carr RD, Deacon CF, Johnson BD (2008) Overnight hypoxic exposure and glucagon-like peptide-1 and leptin levels in humans. Appl Physiol Nutr Metab 33:929–935. doi: 10.1139/H08-079 CrossRefGoogle Scholar
  33. 33.
    Surks MI, Chinn KSK, Matoush LO (1966) Alterations in body composition in man after acute exposure to high altitude. J Appl Physiol 21:1741–1746Google Scholar
  34. 34.
    Takamata A, Mack GW, Gillen CM, Nadel ER (1994) Sodium appetite, thirst, and body-fluid regulation in humans during rehydration without sodium replacement. Am J Physiol 266:R1493–R1502Google Scholar
  35. 35.
    Tschop M, Strasburger CJ, Hartmann G, Biollaz J, Bartsch P (1998) Raised leptin concentrations at high altitude associated with loss of appetite. Lancet 352:1119–1120CrossRefGoogle Scholar
  36. 36.
    Verger P, Lanteaume MT, Louissylvestre J (1994) Free food choice after acute exercise in men. Appetite 22:159–164CrossRefGoogle Scholar
  37. 37.
    Westerterp-Plantenga MS (1999) Effects of extreme environments on food intake in human subjects. Proc Nutr Soc 58:791–798CrossRefGoogle Scholar
  38. 38.
    Westerterp-Plantenga MS, Westerterp KR, Rubbens M, Verwegen CRT, Richelet JP, Gardette B (1999) Appetite at “high altitude” [Operation Everest III (Comex-’97)]: a simulated ascent of Mount Everest. J Appl Physiol 87:391–399Google Scholar
  39. 39.
    WesterterpPlantenga MS, Verwegen CRT, Ijedema MJW, Wijckmans NEG, Saris WHM (1997) Acute effects of exercise or sauna on appetite in obese and nonobese men. Physiol Behav 62:1345–1354CrossRefGoogle Scholar
  40. 40.
    Whitten BK, Hannon JP, Klain GJ, Chinn KSK (1968) Effect of high altitude (14,100 Ft) on nitrogenous components of human serum. Metabolism 17:360–365CrossRefGoogle Scholar
  41. 41.
    Woods SC, D’Alessio DA (2008) Central control of body weight and appetite. J Clin Endocrinol Metab 93:S37–S50. doi: 10.1210/Jc.2008-1630 CrossRefGoogle Scholar
  42. 42.
    Zaccaria M, Rocco S, Noventa D, Varnier M, Opocher G (1998) Sodium regulating hormones at high altitude: basal and post-exercise levels. J Clin Endocrinol Metab 83:570–574CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Isabelle Aeberli
    • 1
    • 2
  • Annina Erb
    • 2
  • Kerstin Spliethoff
    • 4
    • 5
  • Daniela Meier
    • 4
  • Oliver Götze
    • 5
    • 6
  • Heiko Frühauf
    • 6
  • Mark Fox
    • 5
    • 6
    • 7
  • Graham S. Finlayson
    • 8
  • Max Gassmann
    • 4
    • 5
    • 9
  • Kaspar Berneis
    • 1
    • 5
  • Marco Maggiorini
    • 5
    • 10
  • Wolfgang Langhans
    • 3
    • 5
  • Thomas A. Lutz
    • 4
    • 5
  1. 1.Division of Endocrinology, Diabetes and Clinical NutritionUniversity Hospital ZurichZurichSwitzerland
  2. 2.Human Nutrition LaboratoryETH ZurichZurichSwitzerland
  3. 3.Physiology and Behavior LaboratoryETH ZurichZurichSwitzerland
  4. 4.Institute of Veterinary PhysiologyVetsuisse Faculty University of ZurichZurichSwitzerland
  5. 5.Centre for Integrative Human PhysiologyZurichSwitzerland
  6. 6.Division of Gastroenterology and HepatologyUniversity Hospital ZurichZurichSwitzerland
  7. 7.NIHR Biomedical Research UnitNottingham Digestive Diseases CentreNottinghamUK
  8. 8.Biopsychology Group, Institute of Psychological Sciences, Faculty of Medicine, Dentistry and HealthUniversity of LeedsLeedsUK
  9. 9.Universidad Peruana Cayetano Heredia (UPCH)LimaPeru
  10. 10.Pulmonary DivisionUniversity Hospital ZurichZurichSwitzerland

Personalised recommendations