Advertisement

European Journal of Nutrition

, Volume 52, Issue 2, pp 477–487 | Cite as

Effects of pre-exercise feeding on serum hormone concentrations and biomarkers of myostatin and ubiquitin proteasome pathway activity

  • Vincent J. Dalbo
  • Michael D. Roberts
  • Scott Hassell
  • Chad M. Kerksick
Original Contribution

Abstract

Purpose

The aim of the study was to examine the acute effects of pre-exercise ingestion of protein, carbohydrate, and a non-caloric placebo on serum concentrations of insulin and cortisol, and the intramuscular gene expression of myostatin- and ubiquitin proteasome pathway (UPP)-related genes following a bout of resistance exercise.

Methods

Ten untrained college-aged men participated in three resistance exercise sessions (3 × 10 at 80 % 1RM for bilateral hack squat, leg press, and leg extension) in a cross-over fashion, which were randomly preceded by protein, carbohydrate, or placebo ingestion 30 min prior to training. Pre-supplement/pre-exercise, 2 h and 6 h post-exercise muscle biopsies were obtained during each session and analyzed for mRNA fold changes in myostatin (MSTN), activin IIB, follistatin-like 3 (FSTL3), SMAD specific E3 ubiquitin protein ligase 1 (SMURF1), forkhead box O3, F-box protein 32 (FBXO32), and Muscle RING-finger protein-1, with beta-actin serving as the housekeeping gene. Gene expression of all genes was analyzed using real-time PCR.

Results

Acute feeding appeared to have no significant effect on myostatin or UPP biomarkers. However, resistance exercise resulted in a significant downregulation of MSTN and FBXO32 mRNA expression and a significant upregulation in FSTL3 and SMURF1 mRNA expression (p < 0.05).

Conclusions

An acute bout of resistance exercise results in acute post-exercise alterations in intramuscular mRNA expression of myostatin and UPP markers suggestive of skeletal muscle growth. However, carbohydrate and protein feeding surrounding resistance exercise appear to have little influence on the acute expression of these markers.

Keywords

Hypertrophy Strength Insulin Cortisol Protein 

Notes

Acknowledgments

We would like to thank the subjects who participated in this study as well as all laboratory assistants who assisted with data collection and analysis. We would also like to graciously thank the reviewers who took time to critique this manuscript.

Conflict of interest

The authors have no competing interests.

References

  1. 1.
    McCroskery S, Thomas M, Maxwell L et al (2003) Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 162(6):1135–1147. doi: 10.1083/jcb.200207056 CrossRefGoogle Scholar
  2. 2.
    Joulia D, Bernardi H, Garandel V et al (2003) Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin. Exp Cell Res 286(2):263–275CrossRefGoogle Scholar
  3. 3.
    McFarlane C, Hennebry A, Thomas M et al (2008) Myostatin signals through Pax7 to regulate satellite cell self-renewal. Exp Cell Res 314(2):317–329. doi: 10.1016/j.yexcr.2007.09.012 CrossRefGoogle Scholar
  4. 4.
    Costelli P, Muscaritoli M, Bonetto A et al (2008) Muscle myostatin signalling is enhanced in experimental cancer cachexia. Eur J Clin Invest 38(7):531–538. doi: 10.1111/j.1365-2362.2008.01970.x CrossRefGoogle Scholar
  5. 5.
    Gonzalez-Cadavid NF, Taylor WE, Yarasheski K et al (1998) Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proc Natl Acad Sci USA 95(25):14938–14943CrossRefGoogle Scholar
  6. 6.
    McFarlane C, Plummer E, Thomas M et al (2006) Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism. J Cell Physiol 209(2):501–514. doi: 10.1002/jcp.20757 CrossRefGoogle Scholar
  7. 7.
    Amthor H, Otto A, Vulin A et al (2009) Muscle hypertrophy driven by myostatin blockade does not require stem/precursor-cell activity. Proc Natl Acad Sci USA 106(18):7479–7484. doi: 10.1073/pnas.0811129106 CrossRefGoogle Scholar
  8. 8.
    Kraemer WJ, Hakkinen K, Newton RU et al (1999) Effects of heavy-resistance training on hormonal response patterns in younger vs. older men. J Appl Physiol 87(3):982–992Google Scholar
  9. 9.
    Bird SP, Tarpenning KM, Marino FE (2006) Effects of liquid carbohydrate/essential amino acid ingestion on acute hormonal response during a single bout of resistance exercise in untrained men. Nutrition 22(4):367–375. doi: 10.1016/j.nut.2005.11.005 CrossRefGoogle Scholar
  10. 10.
    Allen DL, Cleary AS, Lindsay SF et al (2010) Myostatin expression is increased by food deprivation in a muscle-specific manner and contributes to muscle atrophy during prolonged food deprivation in mice. J Appl Physiol 109(3):692–701. doi: 10.1152/japplphysiol.00504.2010 CrossRefGoogle Scholar
  11. 11.
    Volpi E, Kobayashi H, Sheffield-Moore M et al (2003) Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am J Clin Nutr 78(2):250–258Google Scholar
  12. 12.
    Tipton KD, Elliott TA, Cree MG et al (2007) Stimulation of net muscle protein synthesis by whey protein ingestion before and after exercise. Am J Physiol Endocrinol Metab 292(1):E71–E76. doi: 10.1152/ajpendo.00166.2006 CrossRefGoogle Scholar
  13. 13.
    Paddon-Jones D, Sheffield-Moore M, Aarsland A et al (2005) Exogenous amino acids stimulate human muscle anabolism without interfering with the response to mixed meal ingestion. Am J Physiol Endocrinol Metab 288(4):E761–E767. doi: 10.1152/ajpendo.00291.2004 CrossRefGoogle Scholar
  14. 14.
    Long YC, Cheng Z, Copps KD et al (2011) Insulin receptor substrates Irs1 and Irs2 coordinate skeletal muscle growth and metabolism via the Akt and AMPK pathways. Mol Cell Biol 31(3):430–441. doi: 10.1128/MCB.00983-10 CrossRefGoogle Scholar
  15. 15.
    Lecker SH, Goldberg AL, Mitch WE (2006) Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 17(7):1807–1819. doi: 10.1681/ASN.2006010083 CrossRefGoogle Scholar
  16. 16.
    Andersen LL, Tufekovic G, Zebis MK et al (2005) The effect of resistance training combined with timed ingestion of protein on muscle fiber size and muscle strength. Metabolism 54(2):151–156. doi: 10.1016/j.metabol.2004.07.012 CrossRefGoogle Scholar
  17. 17.
    Hartman JW, Tang JE, Wilkinson SB et al (2007) Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters. Am J Clin Nutr 86(2):373–381Google Scholar
  18. 18.
    Wilkinson SB, Tarnopolsky MA, Macdonald MJ et al (2007) Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. Am J Clin Nutr 85(4):1031–1040Google Scholar
  19. 19.
    Cribb PJ, Hayes A (2006) Effects of supplement timing and resistance exercise on skeletal muscle hypertrophy. Med Sci Sports Exerc 38(11):1918–1925. doi: 10.1249/01.mss.0000233790.08788.3e CrossRefGoogle Scholar
  20. 20.
    Hulmi JJ, Kovanen V, Lisko I et al (2008) The effects of whey protein on myostatin and cell cycle-related gene expression responses to a single heavy resistance exercise bout in trained older men. Eur J Appl Physiol 102(2):205–213. doi: 10.1007/s00421-007-0579-4 CrossRefGoogle Scholar
  21. 21.
    Hulmi JJ, Kovanen V, Selanne H et al (2009) Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. Amino Acids 37(2):297–308. doi: 10.1007/s00726-008-0150-6 CrossRefGoogle Scholar
  22. 22.
    Hulmi JJ, Lockwood CM, Stout JR (2010) Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: a case for whey protein. Nutr Metab (Lond) 7:51. doi: 10.1186/1743-7075-7-51 CrossRefGoogle Scholar
  23. 23.
    Esmarck B, Andersen JL, Olsen S et al (2001) Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. J Physiol 535(Pt 1):301–311CrossRefGoogle Scholar
  24. 24.
    Joulia-Ekaza D, Cabello G (2007) The myostatin gene: physiology and pharmacological relevance. Curr Opin Pharmacol 7(3):310–315. doi: 10.1016/j.coph.2006.11.011 CrossRefGoogle Scholar
  25. 25.
    Hill JJ, Davies MV, Pearson AA et al (2002) The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. J Biol Chem 277(43):40735–40741. doi: 10.1074/jbc.M206379200 CrossRefGoogle Scholar
  26. 26.
    Ma K, Mallidis C, Bhasin S et al (2003) Glucocorticoid-induced skeletal muscle atrophy is associated with upregulation of myostatin gene expression. Am J Physiol Endocrinol Metab 285(2):E363–E371. doi: 10.1152/ajpendo.00487.2002 Google Scholar
  27. 27.
    Gilson H, Schakman O, Combaret L et al (2007) Myostatin gene deletion prevents glucocorticoid-induced muscle atrophy. Endocrinology 148(1):452–460. doi: 10.1210/en.2006-0539 CrossRefGoogle Scholar
  28. 28.
    Reid MB (2005) Response of the ubiquitin-proteasome pathway to changes in muscle activity. Am J Physiol Regul Integr Comp Physiol 288(6):R1423–R1431. doi: 10.1152/ajpregu.00545.2004 CrossRefGoogle Scholar
  29. 29.
    Bodine SC, Latres E, Baumhueter S et al (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294(5547):1704–1708. doi: 10.1126/science.1065874 CrossRefGoogle Scholar
  30. 30.
    Sacheck JM, Ohtsuka A, McLary SC et al (2004) IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. Am J Physiol Endocrinol Metab 287(4):E591–E601. doi: 10.1152/ajpendo.00073.2004 CrossRefGoogle Scholar
  31. 31.
    Dalbo VJ, Roberts MD, Hassell SE et al (2011) Effects of age on serum hormone concentrations and intramuscular proteolytic signaling before and after a single bout of resistance training. J Strength Cond Res 25(1):1–9. doi: 10.1519/JSC.0b013e3181fc5a68 CrossRefGoogle Scholar
  32. 32.
    Baechle T, Earle R (2000) Essentials of strength and conditioning, 2nd edn. Human Kinetics, ChampaignGoogle Scholar
  33. 33.
    Dalbo VJ, Roberts MD, Sunderland KL et al (2011) Acute loading and aging effects on myostatin pathway biomarkers in human skeletal muscle after three sequential bouts of resistance exercise. J Gerontol A Biol Sci Med Sci. doi: 10.1093/gerona/glr091 Google Scholar
  34. 34.
    Mahoney DJ, Carey K, Fu MH et al (2004) Real-time RT-PCR analysis of housekeeping genes in human skeletal muscle following acute exercise. Physiol Genomics 18(2):226–231. doi: 10.1152/physiolgenomics.00067.2004 CrossRefGoogle Scholar
  35. 35.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res 29(9):e45CrossRefGoogle Scholar
  36. 36.
    Louis E, Raue U, Yang Y et al (2007) Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle. J Appl Physiol 103(5):1744–1751. doi: 10.1152/japplphysiol.00679.2007 CrossRefGoogle Scholar
  37. 37.
    Costa A, Dalloul H, Hegyesi H et al (2007) Impact of repeated bouts of eccentric exercise on myogenic gene expression. Eur J Appl Physiol 101(4):427–436CrossRefGoogle Scholar
  38. 38.
    Yang Y, Creer A, Jemiolo B et al (2005) Time course of myogenic and metabolic gene expression in response to acute exercise in human skeletal muscle. J Appl Physiol 98(5):1745–1752CrossRefGoogle Scholar
  39. 39.
    Hulmi JJ, Tannerstedt J, Selanne H et al (2009) Resistance exercise with whey protein ingestion affects mTOR signaling pathway and myostatin in men. J Appl Physiol 106(5):1720–1729. doi: 10.1152/japplphysiol.00087.2009 CrossRefGoogle Scholar
  40. 40.
    Mascher H, Tannerstedt J, Brink-Elfegoun T et al (2008) Repeated resistance exercise training induces different changes in mRNA expression of MAFbx and MuRF-1 in human skeletal muscle. Am J Physiol Endocrinol Metab 294(1):E43–E51. doi: 10.1152/ajpendo.00504.2007 CrossRefGoogle Scholar
  41. 41.
    Fry AC, Lohnes CA (2010) Acute testosterone and cortisol responses to high power resistance exercise. Fiziol Cheloveka 36(4):102–106Google Scholar
  42. 42.
    McCaulley GO, McBride JM, Cormie P et al (2009) Acute hormonal and neuromuscular responses to hypertrophy, strength and power type resistance exercise. Eur J Appl Physiol 105(5):695–704. doi: 10.1007/s00421-008-0951-z CrossRefGoogle Scholar
  43. 43.
    Dugue B, Leppanen EA, Teppo AM et al (1993) Effects of psychological stress on plasma interleukins-1 beta and 6, C-reactive protein, tumour necrosis factor alpha, anti-diuretic hormone and serum cortisol. Scand J Clin Lab Invest 53(6):555–561CrossRefGoogle Scholar
  44. 44.
    Takai N, Yamaguchi M, Aragaki T et al (2004) Effect of psychological stress on the salivary cortisol and amylase levels in healthy young adults. Arch Oral Biol 49(12):963–968. doi: 10.1016/j.archoralbio.2004.06.007 CrossRefGoogle Scholar
  45. 45.
    Borgenvik M, Apro W, Blomstrand E (2012) Intake of branched-chain amino acids influences the levels of MAFbx mRNA and MuRF-1 total protein in resting and exercising human muscle. Am J Physiol Endocrinol Metab 302(5):E510–E521. doi: 10.1152/ajpendo.00353.2011 CrossRefGoogle Scholar
  46. 46.
    Raue U, Slivka D, Jemiolo B et al (2006) Myogenic gene expression at rest and after a bout of resistance exercise in young (18–30 yr) and old (80–89 yr) women. J Appl Physiol 101(1):53–59. doi: 10.1152/japplphysiol.01616.2005 CrossRefGoogle Scholar
  47. 47.
    Hulmi JJ, Ahtiainen JP, Kaasalainen T et al (2007) Postexercise myostatin and activin IIb mRNA levels: effects of strength training. Med Sci Sports Exerc 39(2):289–297. doi: 10.1249/01.mss.0000241650.15006.6e CrossRefGoogle Scholar
  48. 48.
    Willoughby DS (2004) Effects of heavy resistance training on myostatin mRNA and protein expression. Med Sci Sports Exerc 36(4):574–582CrossRefGoogle Scholar
  49. 49.
    Coffey VG, Shield A, Canny BJ et al (2006) Interaction of contractile activity and training history on mRNA abundance in skeletal muscle from trained athletes. Am J Physiol Endocrinol Metab 290(5):E849–E855. doi: 10.1152/ajpendo.00299.2005 CrossRefGoogle Scholar
  50. 50.
    Cribb PJ, Williams AD, Stathis CG et al (2007) Effects of whey isolate, creatine, and resistance training on muscle hypertrophy. Med Sci Sports Exerc 39(2):298–307. doi: 10.1249/01.mss.0000247002.32589.ef CrossRefGoogle Scholar
  51. 51.
    Candow DG, Burke NC, Smith-Palmer T et al (2006) Effect of whey and soy protein supplementation combined with resistance training in young adults. Int J Sport Nutr Exerc Metab 16(3):233–244Google Scholar
  52. 52.
    Kerksick CM, Rasmussen CJ, Lancaster SL et al (2006) The effects of protein and amino acid supplementation on performance and training adaptations during ten weeks of resistance training. J Strength Cond Res 20(3):643–653. doi: 10.1519/R-17695.1 Google Scholar
  53. 53.
    Roberts MD, Dalbo VJ, Hassell SE et al (2010) Effects of preexercise feeding on markers of satellite cell activation. Med Sci Sports Exerc 42(10):1861–1869. doi: 10.1249/MSS.0b013e3181da8a29 CrossRefGoogle Scholar
  54. 54.
    Deldicque L, Theisen D, Francaux M (2005) Regulation of mTOR by amino acids and resistance exercise in skeletal muscle. Eur J Appl Physiol 94(1–2):1–10. doi: 10.1007/s00421-004-1255-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Vincent J. Dalbo
    • 1
  • Michael D. Roberts
    • 2
  • Scott Hassell
    • 3
  • Chad M. Kerksick
    • 3
  1. 1.Faculty of Sciences, Engineering and Health, School of Medical and Applied Sciences, Institute for Health and Social Science ResearchCentral Queensland UniversityRockhamptonAustralia
  2. 2.Department of Biomedical Science, Veterinary Medicine BuildingUniversity of Missouri-ColumbiaColumbiaUSA
  3. 3.Applied Biochemistry and Molecular Physiology Laboratory, Department of Health and Exercise Science, 1401 Asp Ave., Room 109University of OklahomaNormanUSA

Personalised recommendations