European Journal of Nutrition

, Volume 52, Issue 1, pp 281–288 | Cite as

Simultaneous ingestion of dietary proteins reduces the bioavailability of galloylated catechins from green tea in humans

  • Sarah EgertEmail author
  • Jane Tereszczuk
  • Silvia Wein
  • Manfred James Müller
  • Jan Frank
  • Gerald Rimbach
  • Siegfried Wolffram
Original Contribution



To investigate the influence of dietary proteins (casein, soy protein) and skimmed milk on the plasma kinetics of green tea (GT) catechins.


In a randomized cross-over design with one-week intervals, 24 healthy normal-weight women consumed a test drink containing 1.75 g GT extract with or without the addition of different proteins. Treatments were GT (control), GT with skimmed milk (GT + M), GT with caseinate (GT + CS), or GT with soy protein (GT + S). Venous blood samples were taken before and several times during a period of 4.5 h after consumption of the test drink. Plasma concentrations of catechins were analyzed by HPLC with electrochemical detection.


Compared to control, consumption of GT with milk, caseinate, or soy protein significantly reduced the bioavailability (mean area under the plasma concentration–time curve) of total catechins (means ± SEM; GT + M, 87 ± 5%; GT + CS, 79 ± 5%; GT + S, 88 ± 4%), epigallocatechin gallate (GT + M, 68 ± 4%; GT + CS, 63 ± 5%; GT + S, 76 ± 5%), and epicatechin gallate (GT + M, 68 ± 5%; GT + CS, 66 ± 6%; GT + S, 77 ± 6%), while the bioavailability of non-galloylated catechins such as epigallocatechin (GT + M, 134 ± 9%; GT + CS, 118 ± 9 %; GT + S, 123 ± 8%) and epicatechin (GT + M, 125 ± 10%; GT + CS, 114 ± 11%; GT + S, 110 ± 8%) significantly increased. No significant differences in bioavailability of GT catechins were observed between the treatments GT + M, GT + CS, or GT + S.


Simultaneous ingestion of dietary proteins reduces the bioavailability of galloylated catechins from GT in humans.


Catechins Flavan-3-ols Bioavailability Dietary protein Human study 



We are indebted to Plantextrakt (Vestenbergsgreuth, Germany) for providing the green tea extract and analyses, to Meggle (Wasserburg, Germany) for providing the caseinate, to the Solae Company (St. Louis, North America) for providing the soy protein, to Maike Jürgensen for valuable technical assistance, and to Isabella Serafin for performing the venipunctures.

Conflict of interest



  1. 1.
    Wang ZM, Zhou B, Wang YS, Gong QY, Wang QM, Yan JJ, Gao W, Wang LS (2011) Black and green tea consumption and the risk of coronary artery disease: a meta-analysis. Am J Clin Nutr 93:506–515CrossRefGoogle Scholar
  2. 2.
    Rietveld A, Wiseman S (2003) Antioxidant effects of tea: evidence from human clinical trials. J Nutr 133:3285S–3292SGoogle Scholar
  3. 3.
    Moore RJ, Jackson KG, Minihane AM (2009) Green tea (Camellia sinensis) catechins and vascular function. Br J Nutr 102:1790–1802CrossRefGoogle Scholar
  4. 4.
    Ellinger S, Muller N, Stehle P, Ulrich-Merzenich G (2011) Consumption of green tea or green tea products: is there an evidence for antioxidant effects from controlled interventional studies? Phytomedicine 8:903–915CrossRefGoogle Scholar
  5. 5.
    Graham HN (1992) Green tea composition, consumption, and polyphenol chemistry. Prev Med 21:334–350CrossRefGoogle Scholar
  6. 6.
    Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D (1993) Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342:1007–1011CrossRefGoogle Scholar
  7. 7.
    Arts IC, Hollman PC, Feskens EJ, Bueno de Mesquita HB, Kromhout D (2001) Catechin intake might explain the inverse relation between tea consumption and ischemic heart disease: the Zutphen Elderly Study. Am J Clin Nutr 74:227–232Google Scholar
  8. 8.
    Hertog MG, Sweetnam PM, Fehily AM, Elwood PC, Kromhout D (1997) Antioxidant flavonols and ischemic heart disease in a Welsh population of men: the Caerphilly Study. Am J Clin Nutr 65:1489–1494Google Scholar
  9. 9.
    Serafini M, Ghiselli A, Ferro-Luzzi A (1996) In vivo antioxidant effect of green and black tea in man. Eur J Clin Nutr 50:28–32Google Scholar
  10. 10.
    Serafini M, Bugianesi R, Maiani G, Valtuena S, De Santis S, Crozier A (2003) Plasma antioxidants from chocolate. Nature 424:1013CrossRefGoogle Scholar
  11. 11.
    Reddy VC, Vidya Sagar GV, Sreeramulu D, Venu L, Raghunath M (2005) Addition of milk does not alter the antioxidant activity of black tea. Ann Nutr Metab 49:189–195CrossRefGoogle Scholar
  12. 12.
    Lorenz M, Jochmann N, von Krosigk A, Martus P, Baumann G, Stangl K, Stangl V (2007) Addition of milk prevents vascular protective effects of tea. Eur Heart J 28:219–223CrossRefGoogle Scholar
  13. 13.
    het Hof KH, Kivits GA, Weststrate JA, Tijburg LB (1998) Bioavailability of catechins from tea: the effect of milk. Eur J Clin Nutr 52:356–359CrossRefGoogle Scholar
  14. 14.
    het Hof KH, Wiseman SA, Yang CS, Tijburg LB (1999) Plasma and lipoprotein levels of tea catechins following repeated tea consumption. Proc Soc Exp Biol Med 220:203–209CrossRefGoogle Scholar
  15. 15.
    Arts MJ, Haenen GR, Wilms LC, Beetstra SA, Heijnen CG, Voss HP, Bast A (2002) Interactions between flavonoids and proteins: effect on the total antioxidant capacity. J Agric Food Chem 50:1184–1187CrossRefGoogle Scholar
  16. 16.
    Baxter NJ, Lilley TH, Haslam E, Williamson MP (1997) Multiple interactions between polyphenols and a salivary proline-rich protein repeat result in complexation and precipitation. Biochemistry 36:5566–5577CrossRefGoogle Scholar
  17. 17.
    de Freitas V, Mateus N (2001) Structural features of procyanidin interactions with salivary proteins. J Agric Food Chem 49:940–945CrossRefGoogle Scholar
  18. 18.
    Jobstl E, Howse JR, Fairclough JP, Williamson MP (2006) Noncovalent cross-linking of casein by epigallocatechin gallate characterized by single molecule force microscopy. J Agric Food Chem 54:4077–4081CrossRefGoogle Scholar
  19. 19.
    Lee MJ, Wang ZY, Li H, Chen L, Sun Y, Gobbo S, Balentine DA, Yang CS (1995) Analysis of plasma and urinary tea polyphenols in human subjects. Cancer Epidemiol Biomarkers Prev 4:393–399Google Scholar
  20. 20.
    Wang Y, Ho CT (2009) Polyphenolic chemistry of tea and coffee: a century of progress. J Agric Food Chem 57:8109–8114CrossRefGoogle Scholar
  21. 21.
    Balentine DA, Wiseman SA, Bouwens LC (1997) The chemistry of tea flavonoids. Crit Rev Food Sci Nutr 37:693–704CrossRefGoogle Scholar
  22. 22.
    Kartsova L, Alekseeva A (2008) Effect of milk caseins on the concentration of polyphenolic compounds in tea. J Anal Chem 63:1107–1111CrossRefGoogle Scholar
  23. 23.
    Williamson MP (1994) The structure and function of proline-rich regions in proteins. Biochem J 297(Pt 2):249–260Google Scholar
  24. 24.
    Leenen R, Roodenburg AJ, Tijburg LB, Wiseman SA (2000) A single dose of tea with or without milk increases plasma antioxidant activity in humans. Eur J Clin Nutr 54:87–92CrossRefGoogle Scholar
  25. 25.
    Kyle JA, Morrice PC, McNeill G, Duthie GG (2007) Effects of infusion time and addition of milk on content and absorption of polyphenols from black tea. J Agric Food Chem 55:4889–4894CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Sarah Egert
    • 1
    • 2
    Email author
  • Jane Tereszczuk
    • 3
  • Silvia Wein
    • 3
  • Manfred James Müller
    • 2
  • Jan Frank
    • 4
    • 5
  • Gerald Rimbach
    • 5
  • Siegfried Wolffram
    • 3
  1. 1.Department of Nutrition and Food Science, Nutritional PhysiologyUniversity of BonnBonnGermany
  2. 2.Department of Human Nutrition, Institute of Human Nutrition and Food ScienceChristian-Albrechts-University of KielKielGermany
  3. 3.Institute of Animal Nutrition and PhysiologyChristian-Albrechts-University of KielKielGermany
  4. 4.Institute of Biological Chemistry and NutritionUniversity of HohenheimStuttgartGermany
  5. 5.Department of Food Science, Institute of Human Nutrition and Food ScienceChristian-Albrechts-University of KielKielGermany

Personalised recommendations