European Journal of Nutrition

, Volume 51, Issue 4, pp 507–512 | Cite as

The sourdough fermentation may enhance the recovery from intestinal inflammation of coeliac patients at the early stage of the gluten-free diet

  • Maria Calasso
  • Olimpia Vincentini
  • Francesco Valitutti
  • Cristina Felli
  • Marco Gobbetti
  • Raffaella Di Cagno
Short Communication



This study aimed at investigating the effect of corn, rice and amaranth gluten-free (GF) sourdoughs on the release of nitric oxide (NO) and synthesis of pro-inflammatory cytokines by duodenal mucosa biopsies of eight coeliac disease (CD) patients.


Selected lactic acid bacteria were used as starters for the manufacture of corn, rice or amaranth sourdoughs. Chemically acidified doughs, without bacterial starters, and doughs started with baker’s yeast alone were also manufactured from the same GF matrices. Pepsin-trypsin (PT) digests were produced from all sourdoughs and doughs, and used to assay the rate of recovery of biopsy specimens from eight CD patients at diagnosis. The release of NO and the synthesis of pro-inflammatory cytokines interferon-γ (IFN-γ) were assayed.


During fermentation, lactic acid bacteria acidified and grew well (ca. log 9.0 CFU/g) on all GF matrices, showing intense proteolysis. Duodenal biopsy specimens still released NO and IFN-γ when subjected to treatments with basal medium (control), PT-digest from chemically acidified doughs and PT-digest from doughs fermented with baker’s yeast alone. On the contrary, the treatment of all the biopsy specimens with PT-digests from all GF matrices subjected to sourdough fermentation significantly decreased the release of NO and the synthesis of IFN-γ.


During manufacture of GF baked goods, the use of sourdough fermentation could be considered as an adjuvant to enhance the recovery from intestinal inflammation of coeliac patients at the early stage of the gluten-free diet.


Coeliac disease Sourdough Nitric oxide Interferon-γ Biopsies of duodenal mucosa 


  1. 1.
    Sollid MS, Gray GM (2004) A role for bacteria in celiac disease? Am J Gastroenterol 99:905–906CrossRefGoogle Scholar
  2. 2.
    Kontakou M, Przemioslo RT, Sturgess RP (1995) Cytokine mRNA expression in the mucosa of treated coeliac patients after wheat peptide challenge. Gut 37:52–57CrossRefGoogle Scholar
  3. 3.
    Rewers M (2005) Epidemiology of celiac disease: what are the prevalence, incidence, and progression of celiac disease? Gastroenterology 128:47–51CrossRefGoogle Scholar
  4. 4.
    Pyle GG, Paaso B, Anderson BE, Allen DD, Marti T, Li Q, Siegel M, Koshla C, Gray GM (2005) Effect of pretreatment of food gluten with prolyl endopeptidase on gluten-induced malabsorption in celiac spue. Clin Gastroenterol Hepatol 3:687–694CrossRefGoogle Scholar
  5. 5.
    Gianfrani C, Siciliano RA, Facchiano AM, Camarca A, Mazzeo MF, Costantini S, Salvati VM, Maurano F, Mazzarella G, Iaquinto G, Bergamo P, Rossi M (2007) Transamidation of wheat flour inhibits the response to gliadin of intestinal T cells in celiac disease. Gastroenterology 133:780–789CrossRefGoogle Scholar
  6. 6.
    Kupper C (2005) Dietary guidelines and implementation for celiac disease. Gastroenterology 128:S121–S127CrossRefGoogle Scholar
  7. 7.
    Arendt EK, Ryam LAM, Dal Bello F (2007) Impact of sourdough on the texture of bread. Food Microbiol 24:165–174CrossRefGoogle Scholar
  8. 8.
    Moroni AV, Dal Bello F, Arendt EK (2009) Sourdough in gluten-free bread-making: an ancient technology to solve a novel issue? Food Microbiol 26:676–684CrossRefGoogle Scholar
  9. 9.
    Sivaramakrishnan HP, Senge B, Chattopadhyay PK (2004) Rheological properties of rice dough for making rice bread. J Food Eng 62:37–45CrossRefGoogle Scholar
  10. 10.
    Di Cagno R, Rizzello CG, De Angelis M, Cassone A, Giuliani GM, Benedusi A, Limitone A, Surico R, Gobbetti M (2008) Use of selected sourdough strains of Lactobacillus for enhancing the nutritional and sensory properties of gluten-free breads. J Food Prot 71:1491–1495Google Scholar
  11. 11.
    Moore MM, Dal Bello F, Arendt EK (2008) Sourdough fermented by Lactobacillus plantarum FST 17 improves the quality and shelf-life of gluten free bread. Eur Food Res Technol 226:1309–1316CrossRefGoogle Scholar
  12. 12.
    Schober TJ, Bean SR, Boyle DL (2007) Gluten-free sorghum bread improved by sourdough fermentation: biochemical, rheological, and microstructural background. J Agric Food Chem 55:5137–5146CrossRefGoogle Scholar
  13. 13.
    Murray JA, Rubio-Tapia A, Van Dyke CT, Brogan DL, Knipschield MA, Lahr B, Rumalla A, Zinsmeister AR, Gostout CJ (2008) Mucosal atrophy in celiac disease: extent of involvement, correlation with clinical presentation, and response to treatment. Clin Gastroenterol Hepatol 6:186–193CrossRefGoogle Scholar
  14. 14.
    Beckett CG, Dell’Olio D, Shidrawi RG, Rosen-Bronson S, Ciclitira PJ (1999) Gluten-induced nitric oxide and pro-inflammatory cytokine release by cultured coeliac small intestinal biopsies. Eur J Gastroenterol Hepatol 11:529–535CrossRefGoogle Scholar
  15. 15.
    Di Cagno R, De Angelis M, Auricchio S, Greco L, Clarke C, De Vincenzi M, Giovannini C, D’Archivio M, Landolfo F, Gobbetti M (2004) Sourdough bread made from wheat and nontoxic flours and started with selected lactobacilli is tolerated in celiac sprue patients. Appl Environ Microbiol 70:1088–1096CrossRefGoogle Scholar
  16. 16.
    De Angelis M, Di Cagno R, Gallo G, Curci M, Siragusa S, Crecchio C, Parente E, Gobbetti M (2007) Molecular and functional characterization of Lactobacillus sanfranciscensis strains isolated from sourdoughs. Int J Food Microbiol 114:69–82CrossRefGoogle Scholar
  17. 17.
    Rizzello CG, De Angelis M, Di Cagno R, Gianfrani C, Silano M, Losito I, De Vincenzi M, De Bari MD, Palmisano F, Maurano F, Camarca V, Gobbetti M (2007) Highly efficient gluten degradation by lactobacilli and fungal proteases during food processing: new perspectives for celiac disease. Appl Environ Microbiol 73:4499–4507CrossRefGoogle Scholar
  18. 18.
    De Angelis M, Rizzello CG, Fasano A, Clemente MG, De Simone C, Silano M, De Vincenzi M, Losito I, Gobbetti M (2005) VSL#3 probiotic preparation has the capacity to hydrolyze gliadin polypeptides responsible for celiac sprue. Biochim Biophys Acta-Mol Basis Dis 1762:80–93Google Scholar
  19. 19.
    Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite and nitrate in biological fluids. Anal Biochem 126:131–138CrossRefGoogle Scholar
  20. 20.
    Tahat N, Shapiro S, Karban A, Gerstein R, Kinarty A, Lerner A (1999) Citokyne profile in celiac disease. Svand J Immunol 49:441–446CrossRefGoogle Scholar
  21. 21.
    Belton PS, Taylor JRN (2002) Pseudocereals and less common cereals grain properties and utilization potential. Springer, BerlinGoogle Scholar
  22. 22.
    Kuhn M, Goetz H (1999) Teige und Kleber im System Amarant–Weizen. Getreide Mehl Brot 53:326–333Google Scholar
  23. 23.
    Silva-Sanchez C, de la Rosa APB, Leon-Galvan MF, de Lumen BO, de Leon-Rodriguez C, de Mejia EG (2008) Bioactive peptides in amaranth (Amaranthus hypochondriacus) seed. J Agric Food Chem 56:1233–1240CrossRefGoogle Scholar
  24. 24.
    Sterr Y, Weiss A, Schmidt H (2009) Evaluation of lactic acid bacteria for sourdough fermentation of amaranth. Int J Food Microbiol 136:75–82CrossRefGoogle Scholar
  25. 25.
    Gobbetti M, Rizzello CG, Di Cagno R, De Angelis M (2007) Sourdough lactobacilli and celiac disease. Food Microbiol 24:187–196CrossRefGoogle Scholar
  26. 26.
    Di Cagno R, De Angelis M, Auricchio S, Greco L, Clarke C, De Vincenzi M, Giovannini C, D’Archivio M, Landolfo F, Gobbetti M (2004) Sourdough bread made from wheat and nontoxic flours and started with selected lactobacilli is tolerated in celiac sprue patients. Appl Environ Microbiol 70:1088–1096CrossRefGoogle Scholar
  27. 27.
    De Angelis M, Cassone A, Rizzello CG, Gagliardi F, Minervini F, Calasso M, Di Cagno R, Francavilla R, Gobbetti M (2010) Mechanism of degradation of immunogenic gluten epitopes from Triticum turgidum L. var. durum by sourdough lactobacilli and fungal proteases. Appl Environ Microbiol 76:508–518CrossRefGoogle Scholar
  28. 28.
    Gobbetti M, De Angelis M, Corsetti A, Di Cagno R (2005) Biochemistry and physiology of sourdough lactic acid bacteria. Trends Food Sci Technol 16:57–69CrossRefGoogle Scholar
  29. 29.
    Everts B, Stotzer P, Olsson M, Kilander A, Pettersson A (1999) Increased luminal nitric oxide concentrations in the small intestine of patients with coeliac disease. Eur J Clin Invest 29:692–696CrossRefGoogle Scholar
  30. 30.
    Grisham MB, Pavlick KP, Laroux FS, Hoffman J, Bharwani S, Wolf RE (2002) Nitric oxide and chronic gut inflammation: controversies in inflammatory bowel disease. J Investig Med 50:272–283CrossRefGoogle Scholar
  31. 31.
    Shewry PR, Tatham AS, Kasarda DD (1992) Cereal proteins and coeliac disease. In: Marsh MN (ed) Coeliac disease. Blackwell Scientific, Oxford, pp 305–348Google Scholar
  32. 32.
    Kristjànsson G, Högman M, Venge P, Hällgren R (2005) Gut mucosal granulocyte activation precedes nitric oxide production: studies in coeliac patients challenged with gluten and corn. Gut 54:769–774CrossRefGoogle Scholar
  33. 33.
    Murray IA, Daniels I, Coupland K, Smith JA, Long RG (2002) Increased activity and expression of iNOS in human duodenal enterocytes from patients with celiac disease. Am J Physiol Gastrointest Liver Physiol 283:19–26Google Scholar
  34. 34.
    Nilsen EM, Jahnsen FL, Lundin KE, Johansen FE, Fausa O, Sollid LM, Jahnsen J, Scott H, Brandtzaeg P (1998) Gluten induces an intestinal cytokine response strongly dominated by interferon gamma in patients with celiac disease. Gastroenterology 115:551–563CrossRefGoogle Scholar
  35. 35.
    De Angelis M, Coda R, Silano M, Minervini F, Rizzello CG, Di Cagno R, Vicentini O, De Vincenzi M, Gobbetti M (2006) Fermentation by selected sourdough lactic acid bacteria to decrease coeliac intolerance to rye flour. J Cereal Sci 43:301–314CrossRefGoogle Scholar
  36. 36.
    Przemioslo RT, Lundin KE, Sollid LM, Nelufer J, Ciclitira PJ (1995) Histological changes in small bowel mucosa induced by gliadin sensitive T lymphocytes can be blocked by anti-interferon gamma antibody. Gut 36:874–879CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Maria Calasso
    • 1
  • Olimpia Vincentini
    • 2
  • Francesco Valitutti
    • 3
  • Cristina Felli
    • 2
  • Marco Gobbetti
    • 1
  • Raffaella Di Cagno
    • 1
  1. 1.Department of Biologia e Chimica Agro-Forestale ed AmbientaleUniversity of BariBariItaly
  2. 2.Unit of Human Nutrition and Health, Department of Veterinary Public Health and Food SafetyIstituto Superiore di Sanità RomeRomeItaly
  3. 3.Department of PaediatricsUniversity of Rome, La SapienzaRomeItaly

Personalised recommendations