European Journal of Nutrition

, Volume 51, Issue 7, pp 791–799 | Cite as

Coenzyme Q10 supplementation ameliorates inflammatory signaling and oxidative stress associated with strenuous exercise

  • Javier Díaz-Castro
  • Rafael Guisado
  • Naroa Kajarabille
  • Carmen García
  • Isabel M. Guisado
  • Carlos de Teresa
  • Julio J. OchoaEmail author
Original Contribution



Exhausting exercise induces muscle damage associated with high production of free radicals and pro-inflammatory mediators.


The objective of this study was to determine for the first time and simultaneously whether oral coenzyme Q10 (CoQ10) supplementation can prevent over-expression of inflammatory mediators and oxidative stress associated with strenuous exercise.


The participants were classified in two groups: CoQ10 group (CG) and placebo group (PG). The physical test consisted in a constant run (50 km) that combined several degrees of high effort (mountain run and ultra-endurance), in permanent climbing.


Exercise was associated with an increase in TNF-α, IL-6, 8-hydroxy-2′-deoxyguanosine (8-OHdG), and isoprostane levels, revealing the degree of inflammation and oxidative stress induced. Oral supplementation of CoQ10 during exercise was efficient reducing oxidative stress (decreased membrane hydroperoxides, 8-OHdG and isoprostanes generation, increased catalase, and total antioxidant status), which would lead to the maintenance of the cell integrity. Data obtained also indicate that CoQ10 prevents over-expression of TNF-α after exercise, together with an increase in sTNF-RII that limits the pro-inflammatory actions of TNF. Moreover, CoQ10 supplementation reduced creatinine production.


CoQ10 supplementation before strenuous exercise decreases the oxidative stress and modulates the inflammatory signaling, reducing the subsequent muscle damage.


High-intensity (strenuous) exercise Coenzyme Q10 Oxidative damage Inflammation 



The authors are grateful to the University of Granada for the personal support of J. Díaz-Castro.

Conflict of interest

The authors have declared that no conflict of interest exists.


  1. 1.
    Siddiqui NI, Nessa A, Hossain MA (2010) Regular physical exercise: way to healthy life. Mymensingh Med J 19:154–158Google Scholar
  2. 2.
    Reichhold S, Neubauer O, Bulmer AC, Knasmüller S, Wagner KH (2009) Endurance exercise and DNA stability: is there a link to duration and intensity? Mutat Res 682:28–38CrossRefGoogle Scholar
  3. 3.
    Liu CC, Huang CC, Lin WT, Hsieh CC, Huang SY, Lin SJ, Yang SC (2005) Lycopene supplementation attenuated xanthine oxidase and myeloperoxidase activities in skeletal muscle tissues of rats after exhaustive exercise. Br J Nutr 94:595–601CrossRefGoogle Scholar
  4. 4.
    Suzuki K, Yamada M, Kurakake S, Okamura N, Yamaya K, Liu Q, Kudoh S, Kowatari K, Nakaji S, Sugawara K (2000) Circulating cytokines and hormones with immunosuppressive but neutrophil-priming potentials rise after endurance exercise in humans. Eur J Appl Physiol 81:281–287CrossRefGoogle Scholar
  5. 5.
    Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88:1243–1246CrossRefGoogle Scholar
  6. 6.
    Vina J, Gomez-Cabrera MC, Lloret A, Marquez R, Minana JB, Pallardo FV, Sastre J (2000) Free radicals in exhaustive physical exercise: mechanism of production, and protection by antioxidants. IUBMB Life 50:271–277CrossRefGoogle Scholar
  7. 7.
    Altan O, Pabuccuoglu A, Altan A, Konyalioglu S, Bayraktar H (2003) Effect of heat stress on oxidative stress, lipid peroxidation and some stress parameters in broilers. Br Poult Sci 44:545–550CrossRefGoogle Scholar
  8. 8.
    Sen CK (1995) Oxidants and antioxidants in exercise. J Appl Physiol 79:675–686Google Scholar
  9. 9.
    Richardson RS, Noyszewski EA, Kendrick KF, Leigh JS, Wagner PD (1995) Myoglobin O2 desaturation during exercise: evidence of limited O2 transport. J Clin Invest 96:1916–1926CrossRefGoogle Scholar
  10. 10.
    Clanton TL (2007) Hypoxia-induced reactive oxygen species formation in skeletal muscle. J Appl Physiol 102:2379–2388CrossRefGoogle Scholar
  11. 11.
    Nikolaidis MG, Jamurtas AZ (2009) Blood as a reactive species generator and redox status regulator during exercise. Arch Biochem Biophys 490:77–84CrossRefGoogle Scholar
  12. 12.
    Koren A, Sauber C, Sentjurc M, Schara M (1983) Free radicals in tetanic activity of isolated skeletal muscle. Comp Biochem Physiol 74:633–635Google Scholar
  13. 13.
    Urso ML, Clarkson PM (2003) Oxidative stress, exercise, and antioxidant supplementation. Toxicology 189:41–54CrossRefGoogle Scholar
  14. 14.
    Kasapis C, Thompson PD (2005) The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review. J Am Coll Cardiol 45:1563–1569CrossRefGoogle Scholar
  15. 15.
    Zhou S, Zhang Y, Davie A, Marshall-Gradisnik S, Hu H, Wang J, Brushett D (2005) Muscle and plasma coenzyme Q10 concentration, aerobic power and exercise economy of healthy men in response to four weeks of supplementation. J Sports Med Phys Fitness 45:337–346Google Scholar
  16. 16.
    Ochoa JJ, Quiles JL, Huertas FJ, Mataix J (2005) Coenzyme Q10 protects from aging-related oxidative stress and improves mitochodrial function in heart of rats fed a polyunsaturated fatty acid (PUFA)-rich diet. J Gerontol 60:970–975CrossRefGoogle Scholar
  17. 17.
    Cooke M, Iosia M, Buford T, Shelmadine B, Hudson G, Kerksick C, Rasmussen C, Greenwood M, Leutholtz B, Willoughby D, Kreider R (2008) Effects of acute and 14-day coenzyme Q10 supplementation on exercise performance in both trained and untrained individuals. J Int Soc Sports Nutr 5:8CrossRefGoogle Scholar
  18. 18.
    Hanahan DJ, Ekholm JE (1974) The preparation of red cell ghosts (membranes). Meth Enzymol 31:168–172CrossRefGoogle Scholar
  19. 19.
    Jiang ZY, Hunt JV, Wolff SP (1992) Detection of lipid hydroperoxides using the fox reagent. Anal Biochem 202:384–389CrossRefGoogle Scholar
  20. 20.
    Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Meth Enzymol 105:114–121CrossRefGoogle Scholar
  21. 21.
    Aebi H (1984) Catalase in vitro. Meth Enzymol 150:121–127CrossRefGoogle Scholar
  22. 22.
    Banfi G, Del Fabbro M, Lippi G (2009) Serum creatinine concentration and creatinine-based estimation of glomerular filtration rate in athletes. Sports Med 39:331–337CrossRefGoogle Scholar
  23. 23.
    Fouad AA, Al-Sultan AI, Refaie SM, Yacoubi MT (2010) Coenzyme Q10 treatment ameliorates acute cisplatin nephrotoxicity in mice. Toxicology 274:49–56CrossRefGoogle Scholar
  24. 24.
    Hawley JA (2002) Effect of increased fat availability on metabolism and exercise capacity. Med Sci Sports Exerc 34:1485–1491CrossRefGoogle Scholar
  25. 25.
    Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581Google Scholar
  26. 26.
    Ochoa JJ, Quiles JL, López-Frías M, Huertas FJ, Mataix J (2007) Effect of lifelong coenzyme Q10 supplementation on age-related oxidative stress and mitochondrial function in liver and skeletal muscle of rats fed on a polyunsaturated fatty acid (PUFA)-rich diet. J Gerontol 62:1211–1218CrossRefGoogle Scholar
  27. 27.
    Sohet FM, Neyrinck AM, Pachikian BD, de Backer FC, Bindels LB, Niklowitz P, Menke T, Cani PD, Delzenne NM (2009) Coenzyme Q10 supplementation lowers hepatic oxidative stress and inflammation associated with diet-induced obesity in mice. Biochem Pharmacol 78:1391–1400CrossRefGoogle Scholar
  28. 28.
    Chou WC, Jie C, Kenedy AA, Jones RJ, Trush MA, Dang CV (2004) Role of NADPH oxidase in arsenic-induced reactive oxygen species formation and cytotoxicity in myeloid leukemia cells. Proc Natl Acad Sci USA 101:4578–4583CrossRefGoogle Scholar
  29. 29.
    Tsuneki H, Sekizaki N, Suzuki T, Kobayashi S, Wada T, Okamoto T, Kimura I, Sasaoka T (2007) Coenzyme Q10 prevents high glucose-induced oxidative stress in human umbilical vein endothelial cells. Eur J Pharmacol 566:1–10CrossRefGoogle Scholar
  30. 30.
    Barbiroli B, Iotti S, Lodi R (1998) Aspects of human bioenergetics as studied in vivo by magnetic resonance spectroscopy. Biochimie 80:847–853CrossRefGoogle Scholar
  31. 31.
    Jones K, Hughes K, Mischley L, McKenna DJ (2002) Coenzyme Q-10: efficacy, safety, and use. Altern Ther Health Med 8:42–55Google Scholar
  32. 32.
    Roberts LJ II, Morrow JD (2000) Measurement of F2-isoprostanes as an index of oxidative stress in vivo. Free Radic Biol Med 28:505–513CrossRefGoogle Scholar
  33. 33.
    Jung HJ, Park EH, Lim CJ (2009) Evaluation of anti-angiogenic, anti-inflammatory and antinociceptive activity of coenzyme Q(10) in experimental animals. J Pharm Pharmacol 61:1391–1395Google Scholar
  34. 34.
    Ilbey YO, Ozbek E, Cekmen M, Simsek A, Otunctemur A, Somay A (2009) Protective effect of curcumin in cisplatin-induced oxidative injury in rat testis: mitogen-activated protein kinase and nuclear factor-kappa B signaling pathways. Hum Reprod 24:1717–1725CrossRefGoogle Scholar
  35. 35.
    Pedersen BK, Steensberg A, Fischer C, Keller C, Kelle P, Plomgaard P, Wolsk-Petersen E, Febbraio M (2004) The metabolic role of IL-6 produced during exercise: is IL-6 an exercise factor? Proc Nutr Soc 63:263–267CrossRefGoogle Scholar
  36. 36.
    Bessler H, Bergman M, Blumberger N, Djaldetti M, Salman H (2010) Coenzyme Q10 decreases TNF-alpha and IL-2 secretion by human peripheral blood mononuclear cells. J Nutr Sci Vitaminol 56:77–81CrossRefGoogle Scholar
  37. 37.
    Gökbel H, Gergerlioğlu HS, Okudan N, Gül I, Büyükbaş S, Belviranli M (2010) Effects of coenzyme Q10 supplementation on plasma adiponectin, interleukin-6, and tumor necrosis factor-alpha levels in men. J Med Food 13:216–218CrossRefGoogle Scholar
  38. 38.
    Perrier S, Darakhshan F, Hajduch E (2006) Il-1 receptor antagonist in metabolic diseases: Dr. Jekyll or Mr Hyde? FEBS Lett 580:6289–6294CrossRefGoogle Scholar
  39. 39.
    Lancaster GI (2006) Exercise and cytokines. In: Neil C, Gleeson M, MacLaren D (eds) Immune function in sport and exercise. Elsevier, New York, pp 205–220CrossRefGoogle Scholar
  40. 40.
    Reid MB, Li YP (2001) Cytokines and oxidative signaling in skeletal muscle. Acta Physiol Scand 171:225–232CrossRefGoogle Scholar
  41. 41.
    Kuru S, Inukai A, Kato T, Liang Y, Kimura S, Sobue G (2003) Expression of tumor necrosis factor-alpha in regenerating muscle fibers in inflammatory and noninflammatory myopathies. Acta Neuropathol 105:217–224Google Scholar
  42. 42.
    Guttridge DC, Mayo MW, Madrid LV, Wang CY, Baldwin AS Jr (2000) NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science 289:2363–2366CrossRefGoogle Scholar
  43. 43.
    Starace D, Riccioli A, D’Alessio A, Giampietri C, Petrungaro S, Galli R, Filippini A, Ziparo E, De Cesaris P (2005) Characterization of signaling pathways leading to Fas expression induced by TNF-alpha: pivotal role of NF-kappaB. FASEB J 19:473–475Google Scholar
  44. 44.
    Van Zee KJ, Kohno T, Fischer E, Rock CS, Moldawer LL, Lowry SF (1992) Tumor necrosis factor soluble receptors circulate during experimental and clinical inflammation and can protect against excessive tumor necrosis factor alpha in vitro and in vivo. Proc Natl Acad Sci USA 89:4845–4849CrossRefGoogle Scholar
  45. 45.
    Van Mierlo GJ, Scherer HU, Hameetman M, Morgan ME, Flierman R, Huizinga TW, Toes RE (2008) Cutting edge: TNFR-shedding by CD4 + CD25 + regulatory T cells inhibits the induction of inflammatory mediators. J Immunol 180:2747–2751Google Scholar
  46. 46.
    Serrano J, Alonso D, Encinas JM, Lopez JC, Fernandez AP, Castro-Blanco S, Fernández-Vizarra P, Richart A, Bentura ML, Santacana M, Uttenthal LO, Cuttitta F, Rodrigo J, Martinez A (2002) Adrenomedullin expression is upregulated by ischemia-reperfusion in the cerebral cortex of the adult rat. Neuroscience 109:717–731CrossRefGoogle Scholar
  47. 47.
    Gonzalez P, Burgaya F, Acarin L, Peluffo H, Castellano B, Gonzalez B (2009) Interleukin-10 and interleukin-10 receptor-I are upregulated in glial cells after an excitotoxic injury to the postnatal rat brain. J Neuropathol Exp Neurol 68:391–403CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Javier Díaz-Castro
    • 1
    • 2
  • Rafael Guisado
    • 3
  • Naroa Kajarabille
    • 1
    • 2
  • Carmen García
    • 3
  • Isabel M. Guisado
    • 4
  • Carlos de Teresa
    • 5
  • Julio J. Ochoa
    • 1
    • 2
    Email author
  1. 1.Department of PhysiologyUniversity of GranadaGranadaSpain
  2. 2.Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, Health-Sciencies Technological ParkUniversity of GranadaGranadaSpain
  3. 3.Faculty of Health ScienceUniversity of GranadaGranadaSpain
  4. 4.Department of PharmacologyUniversity of GranadaGranadaSpain
  5. 5.Andalussian Center of Sports MedicineSevillaSpain

Personalised recommendations