European Journal of Nutrition

, Volume 51, Issue 6, pp 707–718 | Cite as

Combined fish oil and astaxanthin supplementation modulates rat lymphocyte function

  • Rosemari Otton
  • Douglas Popp Marin
  • Anaysa Paola Bolin
  • Rita de Cássia Santos Macedo
  • Thais Regina Campoio
  • Claudio FinetoJr.
  • Beatriz Alves Guerra
  • José Roberto Leite
  • Marcelo Paes Barros
  • Rita Mattei
Original Contribution



Higher intakes of n-3 polyunsaturated fatty acids that are abundant in marine fishes have been long described as a “good nutritional intervention” with increasing clinical benefits to cardiovascular health, inflammation, mental, and neurodegenerative diseases. The present study was designed to investigate the effect of daily fish oil (FO—10 mg EPA/kg body weight (BW) and 7 mg DHA/kg BW) intake by oral gavage associated with the antioxidant astaxanthin (ASTA—1 mg/kg BW) on the redox metabolism and the functional properties of lymphocytes from rat lymph nodes.


This study was conducted by measurements of lymphocyte proliferation capacity, ROS production [superoxide (O 2 •− ) and hydrogen peroxide (H2O2)], nitric oxide (NO) generation, intracellular calcium release, oxidative damage to lipids and proteins, activities of major antioxidant enzymes, GSH/GSSG content, and cytokines release.


After 45 days of FO + ASTA supplementation, the proliferation capacity of activated T- and B-lymphocytes was significantly diminished followed by lower levels of O 2 •− , H2O2 and NO production, and increased activities of total/SOD, GR and GPx, and calcium release in cytosol. ASTA was able to prevent oxidative modification in cell structures through the suppression of the oxidative stress condition imposed by FO. l-selectin was increased by FO, and IL-1β was decreased only by ASTA supplementation.


We can propose that association of ASTA with FO could be a good strategy to prevent oxidative stress induced by polyunsaturated fatty acids and also to potentiate immuno-modulatory effects of FO.


Antioxidant Astaxanthin Carotenoid Fish oil Leukocytes Lymphocyte Oxidative stress n-3 fatty acids 



The authors are indebted to the constant assistance of Geraldo, TP. This research is supported by Fundação de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP 07/03334-6, 2009/12342-8, and 2002/09405-9), Universidade Cruzeiro do Sul, and Departamento de Psicobiologia—UNIFESP/Associação Fundo de Incentivo à Psicofarmacologia (AFIP). Dr. Marcelo Paes de Barros is also indebted to the International Foundation for Science (F/3816-1) for additional funds and to Dr. Åke Lignell from BioReal AB/Fuji Chemicals (Sweden/Japan) for supplying astaxanthin-rich algal biomass for in vivo studies.

Conflict of interest

The authors declare they have no competing financial interests.


  1. 1.
    Calder PC (2009) Polyunsaturated fatty acids and inflammatory processes: new twists in an old tale. Biochimie. doi: 10.1016/j.biochi.2009.01.008
  2. 2.
    Calder PC, Yaqoob P (2009) Understanding omega-3 polyunsaturated fatty acids. Postgrad Med 121:148–157. doi: 10.3810/pgm.2009.11.2083 CrossRefGoogle Scholar
  3. 3.
    Fortin PR, Lew RA, Liang MH, Wright EA, Beckett LA, Chalmers TC, Sperling RI (1995) Validation of a meta-analysis: the effects of fish oil in rheumatoid arthritis. J Clin Epidemiol 48:1379–1390CrossRefGoogle Scholar
  4. 4.
    De Caterina R, Cybulsky MI, Clinton SK, Gimbrone MA Jr, Libby P (1994) The omega-3 fatty acid docosahexaenoate reduces cytokine-induced expression of proatherogenic and proinflammatory proteins in human endothelial cells. Arterioscler Thromb 14:1829–1836CrossRefGoogle Scholar
  5. 5.
    Hughes DA, Southon S, Pinder AC (1996) (n-3) Polyunsaturated fatty acids modulate the expression of functionally associated molecules on human monocytes in vitro. J Nutr 126:603–610Google Scholar
  6. 6.
    De Caterina R, Libby P (1996) Control of endothelial leukocyte adhesion molecules by fatty acids. Lipids 31(Suppl):S57–S63CrossRefGoogle Scholar
  7. 7.
    Hughes DA, Pinder AC, Piper Z, Johnson IT, Lund EK (1996) Fish oil supplementation inhibits the expression of major histocompatibility complex class II molecules and adhesion molecules on human monocytes. Am J Clin Nutr 63:267–272Google Scholar
  8. 8.
    Calder PC (2006) Polyunsaturated fatty acids and inflammation. Prostaglandins Leukot Essent Fatty Acids 75:197–202. doi: 10.1016/j.plefa.2006.05.012 CrossRefGoogle Scholar
  9. 9.
    Collie-Duguid ES, Wahle KW (1996) Inhibitory effect of fish oil n-3 polyunsaturated fatty acids on the expression of endothelial cell adhesion molecules. Biochem Biophys Res Commun 220:969–974. doi: 10.1006/bbrc.1996.0516 CrossRefGoogle Scholar
  10. 10.
    Sanderson P, Calder PC (1998) Dietary fish oil diminishes lymphocyte adhesion to macrophage and endothelial cell monolayers. Immunology 94:79–87CrossRefGoogle Scholar
  11. 11.
    Calder PC, Yaqoob P, Thies F, Wallace FA, Miles EA (2002) Fatty acids and lymphocyte functions. Br J Nutr 87(Suppl 1):S31–S48CrossRefGoogle Scholar
  12. 12.
    Deckelbaum RJ, Calder PC (2010) Dietary n-3 and n-6 fatty acids: are there ‘bad’ polyunsaturated fatty acids? Curr Opin Clin Nutr Metab Care 13:123–124. doi: 10.1097/MCO.0b013e328336696d Google Scholar
  13. 13.
    Barros MP, Pinto E, Colepicolo P, Pedersen M (2001) Astaxanthin and peridinin inhibit oxidative damage in Fe(2+)-loaded liposomes: scavenging oxyradicals or changing membrane permeability? Biochem Biophys Res Commun 288:225–232. doi: 10.1006/bbrc.2001.5765 CrossRefGoogle Scholar
  14. 14.
    Palozza P, Krinsky NI (1992) Astaxanthin and canthaxanthin are potent antioxidants in a membrane model. Arch Biochem Biophys 297:291–295CrossRefGoogle Scholar
  15. 15.
    Iwamoto T, Hosoda K, Hirano R, Kurata H, Matsumoto A, Miki W, Kamiyama M, Itakura H, Yamamoto S, Kondo K (2000) Inhibition of low-density lipoprotein oxidation by astaxanthin. J Atheroscler Thromb 7:216–222Google Scholar
  16. 16.
    Iwamoto T, Hosoda K, Hirano R, Kurata H, Matsumoto A, Miki W, Kamiyama M, Itakura H, Yamamoto S, Kondo K (2000) Inhibition of low-density lipoprotein oxidation by astaxanthin. J Atheroscler Thromb 7:216–222Google Scholar
  17. 17.
    Jacobsson LS, Yuan XM, Zieden B, Olsson AG (2004) Effects of alpha-tocopherol and astaxanthin on LDL oxidation and atherosclerosis in WHHL rabbits. Atherosclerosis 173:231–237. doi: 10.1016/j.atherosclerosis.2004.01.003 Google Scholar
  18. 18.
    Ohgami K, Shiratori K, Kotake S, Nishida T, Mizuki N, Yazawa K, Ohno S (2003) Effects of astaxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo. Invest Ophthalmol Vis Sci 44:2694–2701CrossRefGoogle Scholar
  19. 19.
    Naito Y, Uchiyama K, Aoi W, Hasegawa G, Nakamura N, Yoshida N, Maoka T, Takahashi J, Yoshikawa T (2004) Prevention of diabetic nephropathy by treatment with astaxanthin in diabetic db/db mice. Biofactors 20:49–59CrossRefGoogle Scholar
  20. 20.
    Hussein G, Sankawa U, Goto H, Matsumoto K, Watanabe H (2006) Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod 69:443–449. doi: 10.1021/np050354+ CrossRefGoogle Scholar
  21. 21.
    Conroy DM, Stubbs CD, Belin J, Pryor CL, Smith AD (1986) The effects of dietary (n-3) fatty acid supplementation on lipid dynamics and composition in rat lymphocytes and liver microsomes. Biochim Biophys Acta 861:457–462CrossRefGoogle Scholar
  22. 22.
    Otton R, Carvalho CR, Mendonca JR, Curi R (2002) Low proliferation capacity of lymphocytes from alloxan-diabetic rats: involvement of high glucose and tyrosine phosphorylation of Shc and IRS-1. Life Sci 71:2759–2771CrossRefGoogle Scholar
  23. 23.
    Pick E, Mizel D (1981) Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. J Immunol Methods 46:211–226CrossRefGoogle Scholar
  24. 24.
    Ding AH, Nathan CF, Stuehr DJ (1988) Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol 141:2407–2412Google Scholar
  25. 25.
    Otton R, da Silva DO, Campoio TR, Silveira LR, de Souza MO, Hatanaka E, Curi R (2007) Non-esterified fatty acids and human lymphocyte death: a mechanism that involves calcium release and oxidative stress. J Endocrinol 195:133–143. doi: 10.1677/JOE-07-0195 CrossRefGoogle Scholar
  26. 26.
    Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450Google Scholar
  27. 27.
    Otton R, Graziola F, Hirata MH, Curi R, Williams JF (1998) Dietary fats alter the activity and expression of glucose-6-phosphate dehydrogenase in rat lymphoid cells and tissues. Biochem Mol Biol Int 46:529–536Google Scholar
  28. 28.
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefGoogle Scholar
  29. 29.
    Mannervik B (1985) Glutathione peroxidase. Methods Enzymol 113:490–495CrossRefGoogle Scholar
  30. 30.
    Ewing JF, Janero DR (1995) Microplate superoxide dismutase assay employing a nonenzymatic superoxide generator. Anal Biochem 232:243–248CrossRefGoogle Scholar
  31. 31.
    Fraga CG, Leibovitz BE, Tappel AL (1988) Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices: characterization and comparison with homogenates and microsomes. Free Radic Biol Med 4:155–161CrossRefGoogle Scholar
  32. 32.
    Biteau B, Labarre J, Toledano MB (2003) ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425:980–984. doi: 10.1038/nature02075 CrossRefGoogle Scholar
  33. 33.
    Murphy ME, Kehrer JP (1989) Oxidation state of tissue thiol groups and content of protein carbonyl groups in chickens with inherited muscular dystrophy. Biochem J 260:359–364Google Scholar
  34. 34.
    Rahman I, Kode A, Biswas SK (2006) Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc 1:3159–3165. doi: 10.1038/nprot.2006.378 CrossRefGoogle Scholar
  35. 35.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  36. 36.
    Calder PC (2007) Immunological parameters: what do they mean? J Nutr 137:773S–780SGoogle Scholar
  37. 37.
    Bolin AP, Macedo RC, Marin DP, Barros MP, Otton R (2010) Astaxanthin prevents in vitro auto-oxidative injury in human lymphocytes. Cell Biol Toxicol 26:457–467. doi: 10.1007/s10565-010-9156-4 Google Scholar
  38. 38.
    Pompeia C, Lopes LR, Miyasaka CK, Procopio J, Sannomiya P, Curi R (2000) Effect of fatty acids on leukocyte function. Braz J Med Biol Res 33:1255–1268CrossRefGoogle Scholar
  39. 39.
    Wang H, Xie X, Lu WG, Ye DF, Chen HZ, Li X, Cheng Q (2004) Ovarian carcinoma cells inhibit T cell proliferation: suppression of IL-2 receptor beta and gamma expression and their JAK-STAT signaling pathway. Life Sci 74:1739–1749CrossRefGoogle Scholar
  40. 40.
    Gorjao R, Cury-Boaventura MF, de Lima TM, Curi R (2007) Regulation of human lymphocyte proliferation by fatty acids. Cell Biochem Funct 25:305–315. doi: 10.1002/cbf.1388 CrossRefGoogle Scholar
  41. 41.
    Denys A, Hichami A, Khan NA (2005) n-3 PUFAs modulate T-cell activation via protein kinase C-alpha and -epsilon and the NF-kappa B signaling pathway. J Lipid Res 46:752–758. doi: 10.1194/jlr.M400444-JLR200 CrossRefGoogle Scholar
  42. 42.
    Bhuvaneswari V, Nagini S (2005) Lycopene: a review of its potential as an anticancer agent. Curr Med Chem Anticancer Agents 5:627–635CrossRefGoogle Scholar
  43. 43.
    Huang CS, Shih MK, Chuang CH, Hu ML (2005) Lycopene inhibits cell migration and invasion and upregulates Nm23–H1 in a highly invasive hepatocarcinoma, SK-Hep-1 cells. J Nutr 135:2119–2123Google Scholar
  44. 44.
    Kim YH, Koh HK, Kim DS (2010) Down-regulation of IL-6 production by astaxanthin via ERK-, MSK-, and NF-kappa B-mediated signals in activated microglia. Int Immunopharmacol 10:1560–1572. doi: 10.1016/j.intimp.2010.09.007
  45. 45.
    Odeberg JM, Kaufmann P, Kroon KG, Hoglund P (2003) Lipid drug delivery and rational formulation design for lipophilic drugs with low oral bioavailability, applied to cyclosporine. Eur J Pharm Sci 20:375–382CrossRefGoogle Scholar
  46. 46.
    Okada Y, Ishikura M, Maoka T (2009) Bioavailability of astaxanthin in Haematococcus algal extract: the effects of timing of diet and smoking habits. Biosci Biotechnol Biochem 73:1928–1932CrossRefGoogle Scholar
  47. 47.
    Petri D, Lundebye AK (2007) Tissue distribution of astaxanthin in rats following exposure to graded levels in the feed. Comp Biochem Physiol C Toxicol Pharmacol 145:202–209. doi: 10.1016/j.cbpc.2006.12.008 CrossRefGoogle Scholar
  48. 48.
    Razzaq TM, Ozegbe P, Jury EC, Sembi P, Blackwell NM, Kabouridis PS (2004) Regulation of T-cell receptor signalling by membrane microdomains. Immunology 113:413–426. doi: 10.1111/j.1365-2567.2004.01998.x CrossRefGoogle Scholar
  49. 49.
    Harder T (2004) Lipid raft domains and protein networks in T-cell receptor signal transduction. Curr Opin Immunol 16:353–359. doi: 10.1016/j.coi.2004.03.013 CrossRefGoogle Scholar
  50. 50.
    Wu M, Harvey KA, Ruzmetov N, Welch ZR, Sech L, Jackson K, Stillwell W, Zaloga GP, Siddiqui RA (2005) Omega-3 polyunsaturated fatty acids attenuate breast cancer growth through activation of a neutral sphingomyelinase-mediated pathway. Int J Cancer 117:340–348. doi: 10.1002/ijc.21238 CrossRefGoogle Scholar
  51. 51.
    Meydani M, Azzi A (2009) Diabetes risk: antioxidants or lifestyle? Am J Clin Nutr 90:253–254. doi: 10.3945/ajcn.2009.28177 CrossRefGoogle Scholar
  52. 52.
    Roth S, Droge W (1987) Regulation of T-cell activation and T-cell growth factor (TCGF) production by hydrogen peroxide. Cell Immunol 108:417–424CrossRefGoogle Scholar
  53. 53.
    Keyse SM, Tyrrell RM (1990) Induction of the heme oxygenase gene in human skin fibroblasts by hydrogen peroxide and UVA (365 nm) radiation: evidence for the involvement of the hydroxyl radical. Carcinogenesis 11:787–791CrossRefGoogle Scholar
  54. 54.
    Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 10:2247–2258Google Scholar
  55. 55.
    Luostarinen R, Saldeen T (1996) Dietary fish oil decreases superoxide generation by human neutrophils: relation to cyclooxygenase pathway and lysosomal enzyme release. Prostaglandins Leukot Essent Fatty Acids 55:167–172CrossRefGoogle Scholar
  56. 56.
    Fisher M, Levine PH, Weiner BH, Johnson MH, Doyle EM, Ellis PA, Hoogasian JJ (1990) Dietary n-3 fatty acid supplementation reduces superoxide production and chemiluminescence in a monocyte-enriched preparation of leukocytes. Am J Clin Nutr 51:804–808Google Scholar
  57. 57.
    Tayyebi-Khosroshahi H, Houshyar J, Tabrizi A, Vatankhah AM, Razzagi Zonouz N, Dehghan-Hesari R (2010) Effect of omega-3 fatty acid on oxidative stress in patients on hemodialysis. Iran J Kidney Dis 4(4):322–326Google Scholar
  58. 58.
    Kim SJ, Zhang Z, Saha A, Sarkar C, Zhao Z, Xu Y, Mukherjee AB (2010) Omega-3 and omega-6 fatty acids suppress ER- and oxidative stress in cultured neurons and neuronal progenitor cells from mice lacking PPT1. Neurosci Lett 479:292–296. doi: 10.1016/j.neulet.2010.05.083 Google Scholar
  59. 59.
    Komatsu W, Ishihara K, Murata M, Saito H, Shinohara K (2003) Docosahexaenoic acid suppresses nitric oxide production and inducible nitric oxide synthase expression in interferon-gamma plus lipopolysaccharide-stimulated murine macrophages by inhibiting the oxidative stress. Free Radic Biol Med 34:1006–1016CrossRefGoogle Scholar
  60. 60.
    Lu G, Greene EL, Nagai T, Egan BM (1998) Reactive oxygen species are critical in the oleic acid-mediated mitogenic signaling pathway in vascular smooth muscle cells. Hypertension 32:1003–1010CrossRefGoogle Scholar
  61. 61.
    Kelley DS, Hubbard NE, Erickson KL (2005) Regulation of human immune and inflammatory responses by dietary fatty acids. Adv Food Nutr Res 50:101–138. doi: 10.1016/S1043-4526(05)50004-4 CrossRefGoogle Scholar
  62. 62.
    Fritsche K (2006) Fatty acids as modulators of the immune response. Annu Rev Nutr 26:45–73. doi: 10.1146/annurev.nutr.25.050304.092610 CrossRefGoogle Scholar
  63. 63.
    Lecchi C, Invernizzi G, Agazzi A, Ferroni M, Pisani LF, Savoini G, Ceciliani F (2011) In vitro modulation of caprine monocyte immune functions by omega-3 polyunsaturated fatty acids. Vet J 189(3):353–355. doi: 10.1016/j.tvjl.2010.09.001 Google Scholar
  64. 64.
    Guimaraes AR, Curi R (1991) Metabolic changes induced by w-3 polyunsaturated fatty acid rich-diet (w-3 PUFA) on the thymus, spleen and mesenteric lymph nodes of adult rats. Biochem Int 25:689–695Google Scholar
  65. 65.
    Krinsky NI, Johnson EJ (2005) Carotenoid actions and their relation to health and disease. Mol Aspects Med 26:459–516. doi: 10.1016/j.mam.2005.10.001 CrossRefGoogle Scholar
  66. 66.
    Nakano M, Onodera A, Saito E, Tanabe M, Yajima K, Takahashi J, Nguyen VC (2008) Effect of astaxanthin in combination with alpha-tocopherol or ascorbic acid against oxidative damage in diabetic ODS rats. J Nutr Sci Vitaminol 54:329–334CrossRefGoogle Scholar
  67. 67.
    Ikeuchi M, Koyama T, Takahashi J, Yazawa K (2007) Effects of astaxanthin in obese mice fed a high-fat diet. Biosci Biotechnol Biochem 71:893–899CrossRefGoogle Scholar
  68. 68.
    Naguib YM (2000) Antioxidant activities of astaxanthin and related carotenoids. J Agric Food Chem 48:1150–1154CrossRefGoogle Scholar
  69. 69.
    Brechard S, Tschirhart EJ (2008) Regulation of superoxide production in neutrophils: role of calcium influx. J Leukoc Biol 84:1223–1237. doi: 10.1189/jlb.0807553 CrossRefGoogle Scholar
  70. 70.
    Prasad A, Bloom MS, Carpenter DO (2010) Role of calcium and ROS in cell death induced by polyunsaturated fatty acids in murine thymocytes. J Cell Physiol 225:829–836. doi: 10.1002/jcp.22290 Google Scholar
  71. 71.
    Yog R, Barhoumi R, McMurray DN, Chapkin RS (2010) n-3 polyunsaturated fatty acids suppress mitochondrial translocation to the immunologic synapse and modulate calcium signaling in T cells. J Immunol 184(10):5865–5873. doi: 10.4049/jimmunol.0904102 Google Scholar
  72. 72.
    Lin TY, Lu CW, Wang SJ (2010) Astaxanthin inhibits glutamate release in rat cerebral cortex nerve terminals via suppression of voltage-dependent Ca(2+) entry and mitogen-activated protein kinase signaling pathway. J Agric Food Chem 58:8271–8278. doi: 10.1021/jf101689t Google Scholar
  73. 73.
    Macedo RC, Bolin AP, Marin DP, Otton R (2010) Astaxanthin addition improves human neutrophils function: in vitro study. Eur J Nutr 49:447–457. doi: 10.1007/s00394-010-0103-1 Google Scholar
  74. 74.
    Maoka T, Etoh T, Kishimoto S, Sakata S (2011) Carotenoids and their fatty acid esters in the petals of Adonis aestivalis. J Oleo Sci 60:47–52Google Scholar
  75. 75.
    Wu TH, Liao JH, Hou WC, Huang FY, Maher TJ, Hu CC (2006) Astaxanthin protects against oxidative stress and calcium-induced porcine lens protein degradation. J Agric Food Chem 54:2418–2423. doi: 10.1021/jf052651q76 CrossRefGoogle Scholar
  76. 76.
    Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M, Sugimoto Y, Miyazaki S, Tsujimoto G (2005) Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 11:90–94. doi: 10.1038/nm1168 CrossRefGoogle Scholar
  77. 77.
    Picker LJ, Butcher EC (1992) Physiological and molecular mechanisms of lymphocyte homing. Annu Rev Immunol 10:561–591. doi: 10.1146/annurev.iy.10.040192.003021 CrossRefGoogle Scholar
  78. 78.
    Mora C, Grewal IS, Wong FS, Flavell RA (2004) Role of l-selectin in the development of autoimmune diabetes in non-obese diabetic mice. Int Immunol 16:257–264CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Rosemari Otton
    • 1
  • Douglas Popp Marin
    • 1
  • Anaysa Paola Bolin
    • 1
  • Rita de Cássia Santos Macedo
    • 1
  • Thais Regina Campoio
    • 1
  • Claudio FinetoJr.
    • 1
  • Beatriz Alves Guerra
    • 1
  • José Roberto Leite
    • 3
  • Marcelo Paes Barros
    • 1
    • 2
  • Rita Mattei
    • 3
  1. 1.Postgraduate Program, Health Sciences, CBSCruzeiro do Sul UniversitySao PauloBrazil
  2. 2.Postgraduate Program, Human Movement Sciences Institute of Physical Activity and Sport SciencesCruzeiro do Sul UniversitySao PauloBrazil
  3. 3.Departamento de PsicobiologiaUniversidade Federal de São Paulo UNIFESPSão PauloBrazil

Personalised recommendations