European Journal of Nutrition

, Volume 50, Issue 7, pp 553–562 | Cite as

Anti-platelet effects of olive oil extract: in vitro functional and proteomic studies

  • Baukje de RoosEmail author
  • Xuguang Zhang
  • Guillermo Rodriguez Gutierrez
  • Sharon Wood
  • Garry J. Rucklidge
  • Martin D. Reid
  • Gary J. Duncan
  • Louise L. Cantlay
  • Garry G. Duthie
  • Niamh O’Kennedy
Original Contribution



Platelets play a key role in haemostasis and wound healing, contributing to formation of vascular plugs. They are also involved in formation of atherosclerosic plaques. Some traditional diets, like the Mediterranean diet, are associated with a lower risk of cardiovascular disease. Components in these diets may have anti-platelet functions contributing to their health benefits.


We studied the effects of alperujo extract, an olive oil production waste product containing the majority of polyphenols found in olive fruits, through measurement of effects on platelet aggregation and activation in isolated human platelets, and through identification of changes in the platelet proteome.


Alperujo extract (40 mg/L) significantly decreased in vitro ADP- (p = 0.002) and TRAP- (p = 0.02) induced platelet activation as measured by the flow cytometry using the antibody for p-selectin (CD62p), but it did not affect the conformation of the fibrinogen receptor as measured by flow cytometry using the antibodies for anti-fibrinogen, CD42a and CD42b. Alperujo extract (100 mg/L) inhibited both collagen- and TRAP-induced platelet aggregation by 5% (p < 0.05), and a combination of hydroxytyrosol and 3,4-dihydroxyphenylglycol were, at least partly, responsible for this effect. Proteomic analysis identified nine proteins that were differentially regulated by the alperujo extract upon ADP-induced platelet aggregation. These proteins represent important mechanisms that may underlie the anti-platelet effects of this extract: regulation of platelet structure and aggregation, coagulation and apoptosis, and signalling by integrin αIIb/β3.


Alperujo extract may protect against platelet activation, platelet adhesion and possibly have anti-inflammatory properties.


Platelet function Mediterranean diet Alperujo extract Proteomics 



The laboratory of BdR is funded by Scottish Government Rural and Environment Research and Analysis Directorate (RERAD). We thank Dr. Juan Fernandez-Bolanos, Instituto de la Grasa, Seville, Spain, for providing us with the alperujo extract, hydroxytyrosol and 3,4-dihydroxyphenylglycol.


  1. 1.
    Keys A, Menotti A, Karvonen MJ, Aravanis C, Blackburn H, Buzina R, Djordjevic BS, Dontas AS, Fidanza F, Keys MH (1986) The diet and 15-year death rate in the seven countries study. Am J Epidemiol 124:903–915Google Scholar
  2. 2.
    de Lorgeril M, Salen P, Martin JL, Monjaud I, Delaye J, Mamelle N (1999) Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon diet heart study. Circulation 99:779–785Google Scholar
  3. 3.
    Trichopoulou A, Costacou T, Bamia C, Trichopoulos D (2003) Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med 348:2599–2608CrossRefGoogle Scholar
  4. 4.
    Knoops KT, de Groot LC, Kromhout D, Perrin AE, Moreiras-Varela O, Menotti A, van Staveren WA (2004) Mediterranean diet, lifestyle factors, and 10-year mortality in elderly European men and women: the HALE project. JAMA 292:1433–1439CrossRefGoogle Scholar
  5. 5.
    Boskou D (2000) Olive oil. World Rev Nutr Diet 87:56–77CrossRefGoogle Scholar
  6. 6.
    Helsing E (1995) Traditional diets and disease patterns of the Mediterranean, circa 1960. Am J Clin Nutr 61:1329S–1337SGoogle Scholar
  7. 7.
    Perez-Jimenez F (2005) International conference on the healthy effect of virgin olive oil. Eur J Clin Invest 35:421–424CrossRefGoogle Scholar
  8. 8.
    Ros E (2003) Dietary cis-monounsaturated fatty acids and metabolic control in type 2 diabetes. Am J Clin Nutr 78:617S–625SGoogle Scholar
  9. 9.
    Carluccio MA, Siculella L, Ancora MA, Massaro M, Scoditti E, Storelli C, Visioli F, Distante A, De Caterina R (2003) Olive oil and red wine antioxidant polyphenols inhibit endothelial activation: antiatherogenic properties of Mediterranean diet phytochemicals. Arterioscler Thromb Vasc Biol 23:622–629CrossRefGoogle Scholar
  10. 10.
    Gonzalez-Santiago M, Martin-Bautista E, Carrero JJ, Fonolla J, Baro L, Bartolome MV, Gil-Loyzaga P, Lopez-Huertas E (2006) One-month administration of hydroxytyrosol, a phenolic antioxidant present in olive oil, to hyperlipemic rabbits improves blood lipid profile, antioxidant status and reduces atherosclerosis development. Atherosclerosis 188:35–42CrossRefGoogle Scholar
  11. 11.
    Kaliora AC, Dedoussis GV, Schmidt H (2006) Dietary antioxidants in preventing atherogenesis. Atherosclerosis 187:1–17CrossRefGoogle Scholar
  12. 12.
    Leger CL, Carbonneau MA, Michel F, Mas E, Monnier L, Cristol JP, Descomps B (2005) A thromboxane effect of a hydroxytyrosol-rich olive oil wastewater extract in patients with uncomplicated type I diabetes. Eur J Clin Nutr 59:727–730CrossRefGoogle Scholar
  13. 13.
    Visioli F, Caruso D, Grande S, Bosisio R, Villa M, Galli G, Sirtori C, Galli C (2005) Virgin olive oil study (VOLOS): vasoprotective potential of extra virgin olive oil in mildly dyslipidemic patients. Eur J Nutr 44:121–127CrossRefGoogle Scholar
  14. 14.
    Petroni A, Blasevich M, Salami M, Papini N, Montedoro GF, Galli C (1995) Inhibition of platelet aggregation and eicosanoid production by phenolic components of olive oil. Thromb Res 78:151–160CrossRefGoogle Scholar
  15. 15.
    Fernandez-Bolanos J, Rodriguez G, Gomez E, Guillen R, Jimenez A, Heredia A, Rodriguez R (2004) Total recovery of the waste of two-phase olive oil processing: isolation of added-value compounds. J Agric Food Chem 52:5849–5855CrossRefGoogle Scholar
  16. 16.
    Fernandez-Bolanos JG, Lopez O, Fernandez-Bolanos J, Rodriguez-Gutierrez G (2008) Hydroxytyrosol and derivatives: isolation, synthesis, and biological properties. Curr Org Chem 12:442–463CrossRefGoogle Scholar
  17. 17.
    Schaffer S, Podstawa M, Visioli F, Bogani P, Muller WE, Eckert GP (2007) Hydroxytyrosol-rich olive mill wastewater extract protects brain cells in vitro and ex vivo. J Agric Food Chem 55:5043–5049CrossRefGoogle Scholar
  18. 18.
    Rodriguez G, Fernandez-Bolanos J, Rodriguez R, Guillen R, Jimenez A (2006) Antioxidant activity of bioactive compounds hydroxytyrosol and 3,4-dihydroxyphenylglycol purified from olive oil waste. Eur Food Res Technol 224:733–741CrossRefGoogle Scholar
  19. 19.
    Rodriguez G, Rodriguez R, Jimenez A, Guillen R, Fernandez-Bolanos J (2007) Effect of steam treatment of alperujo on the composition, enzymatic saccharification, and in vitro digestibility of alperujo. J Agric Food Chem 55:136–142CrossRefGoogle Scholar
  20. 20.
    Fernandez-Bolanos J, Rodriguez G, Rodriguez R, Heredia A, Guillen R, Jimenez A (2002) Production in large quantities of highly purified hydroxytyrosol from liquid-solid waste of two-phase olive oil processing or “Alperujo”. J Agric Food Chem 50:6804–6811CrossRefGoogle Scholar
  21. 21.
    Fernandez-Bolanos J, Rodriguez G, Lama A, Rodriguez-Arcos R, Jimenez A, Guillen R (2008) Purification of 3,4-dihydroxyphenylglycol (DHPG) from vegetable products. 200803630Google Scholar
  22. 22.
    Rodriguez G, Lama A, Jaramillo S, Fuentes-Alventosa JM, Guillen R, Jimenez-Araujo A, Rodriguez-Arcos R, Fernandez-Bolanos J (2009) 3,4-Dihydroxyphenylglycol (DHPG): an important phenolic compound present in natural table olives. J Agric Food Chem 57:6298–6304CrossRefGoogle Scholar
  23. 23.
    Dutta-Roy AK, Crosbie L, Gordon MJ (2001) Effects of tomato extract on human platelet aggregation in vitro. Platelets 12:218–227CrossRefGoogle Scholar
  24. 24.
    O’Kennedy N, Crosbie L, van Lieshout M, Broom JI, Webb DJ, Duttaroy AK (2006) Effects of antiplatelet components of tomato extract on platelet function in vitro and ex vivo: a time-course cannulation study in healthy humans. Am J Clin Nutr 84:570–579Google Scholar
  25. 25.
    O’Kennedy N, Crosbie L, Whelan S, Luther V, Horgan G, Broom JI, Webb DJ, Duttaroy AK (2006) Effects of tomato extract on platelet function: a double-blinded crossover study in healthy humans. Am J Clin Nutr 84:561–569Google Scholar
  26. 26.
    Arbones-Mainar JM, Ross K, Rucklidge GJ, Reid M, Duncan G, Arthur JR, Horgan GW, Navarro MA, Carnicer R, Arnal C, Osada J, Roos BD (2007) Extra virgin olive oils increase hepatic fat accumulation and hepatic antioxidant protein levels in APOE(−/−) mice. J Proteome Res 6:4041–4054CrossRefGoogle Scholar
  27. 27.
    de Roos B, Rucklidge G, Reid M, Ross K, Duncan G, Navarro MA, Arbones-Mainar JM, Guzman-Garcia MA, Osada J, Browne J, Loscher CE, Roche HM (2005) Divergent mechanisms of cis9, trans11-and trans10, cis12-conjugated linoleic acid affecting insulin resistance and inflammation in apolipoprotein E knockout mice: a proteomics approach. FASEB J 19:1746–1748Google Scholar
  28. 28.
    de Roos B, Duivenvoorden I, Rucklidge G, Reid M, Ross K, Lamers RJ, Voshol PJ, Havekes LM, Teusink B (2005) Response of apolipoprotein E*3-Leiden transgenic mice to dietary fatty acids: combining liver proteomics with physiological data. FASEB J 19:813–815Google Scholar
  29. 29.
    de Roos B, Geelen A, Ross K, Rucklidge G, Reid M, Duncan G, Caslake M, Horgan G, Brouwer IA (2008) Identification of potential serum biomarkers of inflammation and lipid modulation that are altered by fish oil supplementation in healthy volunteers. Proteomics 8:1965–1974CrossRefGoogle Scholar
  30. 30.
    de Roos B, Duthie SJ, Polley AC, Mulholland F, Bouwman FG, Heim C, Rucklidge GJ, Johnson IT, Mariman EC, Daniel H, Elliott RM (2008) Proteomic methodological recommendations for studies involving human plasma, platelets, and peripheral blood mononuclear cells. J Proteome Res 7:2280–2290CrossRefGoogle Scholar
  31. 31.
    Michelson AD, Linden MD, Barnard MR, Furman MI (2007) Flow Cytom 2:545–563Google Scholar
  32. 32.
    Freedman JE, Parker C III, Li L, Perlman JA, Frei B, Ivanov V, Deak LR, Iafrati MD, Folts JD (2001) Select flavonoids and whole juice from purple grapes inhibit platelet function and enhance nitric oxide release. Circulation 103:2792–2798Google Scholar
  33. 33.
    Violi F, Pignatelli P, Pulcinelli FM (2002) Synergism among flavonoids in inhibiting platelet aggregation and H2O2 production. Circulation 105:e53Google Scholar
  34. 34.
    Ruggeri ZM (2002) Platelets in atherothrombosis. Nat Med 8:1227–1234CrossRefGoogle Scholar
  35. 35.
    Dembitsky VM (2005) Astonishing diversity of natural surfactants: 5. Biologically active glycosides of aromatic metabolites. Lipids 40:869–900CrossRefGoogle Scholar
  36. 36.
    Hartwig JH, Barkalow K, Azim A, Italiano J (1999) The elegant platelet: signals controlling actin assembly. Thromb Haemost 82:392–398Google Scholar
  37. 37.
    DerMardirossian C, Bokoch GM (2005) GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol 15:356–363CrossRefGoogle Scholar
  38. 38.
    Hall A (2005) Rho GTPases and the control of cell behaviour. Biochem Soc Trans 33:891–895CrossRefGoogle Scholar
  39. 39.
    Nishioka H, Horiuchi H, Tabuchi A, Yoshioka A, Shirakawa R, Kita T (2001) Small GTPase Rho regulates thrombin-induced platelet aggregation. Biochem Biophys Res Commun 280:970–975CrossRefGoogle Scholar
  40. 40.
    Cederholm A, Frostegard J (2007) Annexin A5 as a novel player in prevention of atherothrombosis in SLE and in the general population. Ann N Y Acad Sci 1108:96–103CrossRefGoogle Scholar
  41. 41.
    Cederholm A, Frostegard J (2007) Annexin A5 multitasking: a potentially novel antiatherothrombotic agent? Drug News Perspect 20:321–326CrossRefGoogle Scholar
  42. 42.
    Boersma HH, Kietselaer BL, Stolk LM, Bennaghmouch A, Hofstra L, Narula J, Heidendal GA, Reutelingsperger CP (2005) Past, present, and future of annexin A5: from protein discovery to clinical applications. J Nucl Med 46:2035–2050Google Scholar
  43. 43.
    Laufer EM, Reutelingsperger CP, Narula J, Hofstra L (2008) Annexin A5: an imaging biomarker of cardiovascular risk. Basic Res Cardiol 103:95–104CrossRefGoogle Scholar
  44. 44.
    Lin KH, Hsiao G, Shih CM, Chou DS, Sheu JR (2009) Mechanisms of resveratrol-induced platelet apoptosis. Cardiovasc Res 83:575–585CrossRefGoogle Scholar
  45. 45.
    Poncz M, Eisman R, Heidenreich R, Silver SM, Vilaire G, Surrey S, Schwartz E, Bennett JS (1987) Structure of the platelet membrane glycoprotein IIb. Homology to the alpha subunits of the vitronectin and fibronectin membrane receptors. J Biol Chem 262:8476–8482Google Scholar
  46. 46.
    de Willige SU, Standeven KF, Philippou H, Ariens RA (2009) The pleiotropic role of the fibrinogen gamma’ chain in hemostasis. Blood 114:3994–4001CrossRefGoogle Scholar
  47. 47.
    Jordan PA, Stevens JM, Hubbard GP, Barrett NE, Sage T, Authi KS, Gibbins JM (2005) A role for the thiol isomerase protein ERP5 in platelet function. Blood 105:1500–1507CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Baukje de Roos
    • 1
    Email author
  • Xuguang Zhang
    • 2
  • Guillermo Rodriguez Gutierrez
    • 3
  • Sharon Wood
    • 1
  • Garry J. Rucklidge
    • 1
  • Martin D. Reid
    • 1
  • Gary J. Duncan
    • 1
  • Louise L. Cantlay
    • 1
  • Garry G. Duthie
    • 1
  • Niamh O’Kennedy
    • 2
  1. 1.Rowett Institute of Nutrition & HealthUniversity of AberdeenAberdeenUK
  2. 2.Provexis plc, Rowett Institute of Nutrition & HealthAberdeenUK
  3. 3.Food Biotechnology DepartmentInstituto de la GrasaSevillaSpain

Personalised recommendations