European Journal of Nutrition

, Volume 50, Issue 5, pp 331–339 | Cite as

Whey protein precludes lipid and protein oxidation and improves body weight gain in resistance-exercised rats

  • Fabiano Kenji Haraguchi
  • Marcelo Eustáquio Silva
  • Leandro Xavier Neves
  • Rinaldo Cardoso dos Santos
  • Maria Lúcia Pedrosa
Original Contribution



Resistance exercise such as weight-lifting (WL) increases oxidation products in plasma, but less is known regarding the effect of WL on oxidative damage to tissues. Dietary compounds are known to improve antioxidant defences. Whey protein (WP) is a source of protein in a variety of sport supplements and can enhance physical performance.


To evaluate the effect of WL on biomarkers of lipid and protein oxidation, on liver antioxidants and on muscle growth in the absence or presence of WP in rats.


Thirty-two male Fisher rats were randomly assigned to sedentary or exercise-trained groups and were fed with control or WP diets. The WL programme consisted of inducing the animals to perform sets of jumps with weights attached to the chest. After 8 weeks, arteriovenous blood samples, abdominal fat, liver and gastrocnemius muscle were collected for analysis.


WP precludes WL-mediated increases in muscle protein carbonyl content and maintains low levels of TBARS in exercised and sedentary animals. WL reduced liver CAT activity, whereas WP increased hepatic glutathione content. In addition, WL plus WP generated higher body and muscle weight than exercise without WP.


These data suggest that WP improves antioxidant defences, which contribute to the reduction of lipid and protein oxidation as well as body and muscle weight gain in resistance-exercised rats.


Whey protein Weight-lifting Lipid oxidation Protein oxidation Antioxidants 



This study was supported by Fundação de Amparo à Pesquisa de Minas Gerais—FAPEMIG and Conselho Nacional de Desenvolvimento Científico e Tecnológico—National Counsel of Technological and Scientific Development—CNPQ.

Conflict of interests



  1. 1.
    Davies KJA, Quintanilha AT, Brooks GA, Packer L (1982) Free radicals and tissue damage produced by exercise. Biochem Biophy Res Commun 107:1198–1205CrossRefGoogle Scholar
  2. 2.
    Reid MB (2008) Free radicals and muscle fatigue: Of ROS, canaries, and the IOC. Free Radic Biol Med 44:169–179. doi:10.1016/j.freeradbiomed.2007.03.002 CrossRefGoogle Scholar
  3. 3.
    da Silva LA, Pinho CA, Rocha LG, Tuon T, Silveira PC, Pinho RA (2009) Effect of different models of physical exercise on oxidative stress markers in mouse liver. Appl Physiol Nutr Metab 34:60–65. doi:10.1139/H08-132 CrossRefGoogle Scholar
  4. 4.
    Malaguti M, Angeloni C, Garatachea N, Baldini M, Leoncini E, Collado PS, Teti G, Falconi M, Gonzalez-Gallego J, Hrelia S (2009) Sulforaphane treatment protects skeletal muscle against damage induced by exhaustive exercise in rats. J Appl Physiol 107:1028–1036. doi:10.1152/japplphysiol.00293.2009 CrossRefGoogle Scholar
  5. 5.
    Gomez-Cabrera MC, Domenech E, Viña J (2008) Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med 44:126–131. doi:10.1016/j.freeradbiomed.2007.02.001
  6. 6.
    Reardon TF, Allen DG (2009) Iron injections in mice increase skeletal muscle iron content, induce oxidative stress and reduce exercise performance. Exp Physiol 94:720–730. doi:10.1113/expphysiol.2008.046045 CrossRefGoogle Scholar
  7. 7.
    Powers SK, Ji LL, Leeuwenburgh C (1999) Exercise training induced alterations in skeletal muscle antioxidant capacity: a brief review. Med Sci Sports Exerc 31:987–997. doi:10.1152/physrev.00031.2007 CrossRefGoogle Scholar
  8. 8.
    Okamura K, Doi T, Koichiro H, Sakurai M, Yoshioka Y, Mitsuzono R, Migita T, Sumida S, Sugawa-Katayama Y (1997) Effect of repeated exercise on urinary 8-hydroxy-deoxyguanosine excretion in humans. Free Rad Res 26:507–514CrossRefGoogle Scholar
  9. 9.
    Ramel A, Wagner KH, Elmadfa I (2004) Plasma antioxidants and lipid oxidation after submaximal resistance exercise in men. Eur J Nutr 43:2–6. doi:10.1007/s00394-004-0432-z CrossRefGoogle Scholar
  10. 10.
    Liu JF, Chang WY, Chan KH, Tsai WY, Lin CL, Hsu MC (2005) Blood lipid peroxides and muscle damage increased following intensive resistance training of female weightlifters. Ann N Y Acad Sci 1042:255–261CrossRefGoogle Scholar
  11. 11.
    Deminice R, Sicchieri T, Payão PO, Jordão AA (2010) Blood and salivary oxidative stress biomarkers following an acute session of resistance exercise in humans. Int J Sports Med. doi:
  12. 12.
    Hudson MB, Hosick PA, McCaulley GO, Schrieber L, Wrieden J, McAnulty SR, Triplett NT, McBride JM, Quindry JC (2008) The effect of resistance exercise on humoral markers of oxidative stress. Med Sci Sports Exerc 40(3):542–548. doi:10.1249/MSS.0b013e31815daf89 CrossRefGoogle Scholar
  13. 13.
    Bloomer RJ, Falvo MJ, Fry AC, Schilling BK, Smith WA, Moore CA (2006) Oxidative stress response in trained men following repeated squats or sprints. Med Sci Sports Exerc 38:1436–1442CrossRefGoogle Scholar
  14. 14.
    Morton JP, Kayani AC, McArdle A, Drust B (2009) The exercise-induced stress response of skeletal muscle, with specific emphasis on humans. Sports Med 39:643–662. doi:10.2165/00007256-200939080-00003 CrossRefGoogle Scholar
  15. 15.
    Uchiyama S, Tsukamoto H, Yoshimura S, Tamaki T (2006) Relationship between oxidative stress in muscle tissue and weight-lifting-induced muscle damage. Pflugers Arch 452:109–116. doi:10.1007/s00424-005-0012-y CrossRefGoogle Scholar
  16. 16.
    Jackson MJ (2009) Skeletal muscle aging: role of reactive oxygen species. Crit Care Med 37:S368–S371. doi:10.1097/CCM.0b013e3181b6f97f CrossRefGoogle Scholar
  17. 17.
    Marzani B, Balage M, Vénien A, Astruc T, Papet I, Dardevet D, Mosoni L (2008) Antioxidant supplementation restores defective leucine stimulation of protein synthesis in skeletal muscle from old rats. J Nutr 138:2205–2211. doi:10.3945/jn.108.094029 CrossRefGoogle Scholar
  18. 18.
    Mosoni L, Balage M, Vazeille E, Combaret L, Morand C, Zagol-Ikapitte I, Boutaud O, Marzani B, Papet I, Dardevet D (2010). Antioxidant supplementation had positive effects in old rat muscle, but through better oxidative status in other organs. Nutrition (in press) doi:10.1016/j.nut.2009.09.016
  19. 19.
    Rossi AL, Blostein-Fujii A, DiSilvesto RA (2000) Soy beverage consumption by young men increased plasma total antioxidant status and decreased acute, exercise-induced muscle damage. J Nutraceuticals Funct Med Foods 3:33–44CrossRefGoogle Scholar
  20. 20.
    Dulebohn RV, Yi W, Srivastava A, Akoh CC, Krewer G, Fischer JG (2008) Effects of blueberry (Vaccinium ashei) on DNA damage, lipid peroxidation, and phase II enzyme activities in rats. J Agric Food Chem 56:11700–11706. doi:10.1021/jf802405y CrossRefGoogle Scholar
  21. 21.
    Möller NP, Scholz-Ahrens KE, Roos N, Schrezenmeir J (2008) Bioactive peptides and proteins from foods: indication for health effects. Eur J Nutr 47:171–182. doi:10.1007/s00394-008-0710-2 CrossRefGoogle Scholar
  22. 22.
    Lands LC, Grey VL, Smoutas AA (1999) Effect of supplementation with cysteine donor on muscular performance. J Appl Physiol 87:1381–1385Google Scholar
  23. 23.
    Elia D, Stadler K, Horváth V, Jakus J (2006) Effect of soy- and whey protein-isolate supplemented diet on the redox parameters of trained mice. Eur J Nutr 45:259–266. doi:10.1007/s00394-006-0593-z CrossRefGoogle Scholar
  24. 24.
    Micke P, Beeh KM, Buhl R (2002) Effects of long-term supplementation with whey proteins on plasma glutathione levels of HIV-infected patients. Eur J Nutr 41:12–18. doi:10.1007/s003940200001 CrossRefGoogle Scholar
  25. 25.
    Watanabe A, Okada K, Shimizu Y, Wakabayashi H, Higuchi K, Niiya K, Kuwabara Y, Yasuyama T, Ito H, Tsukishiro T, Kondoh Y, Emi N, Kohri H (2000) Nutritional therapy of chronic hepatitis by whey protein (non-heated). J Med 31:283–302Google Scholar
  26. 26.
    Castro GA, Maria DA, Bouhallab S, Sgarbieri VC (2009) In vitro impact of a whey protein isolate (WPI) and collagen hydrolysates (CHs) on B16F10 melanoma cells proliferation. J Dermatol Sci 56:51–57CrossRefGoogle Scholar
  27. 27.
    Zou ZY, Lin XM, Xu XR, Xu R, Ma L, Li Y, Wang MF(2009) Evaluation of milk basic protein supplementation on bone density and bone metabolism in Chinese young women. Eur J Nutr 48:301-306. doi:10.1007/s00394-009-0014-1 Google Scholar
  28. 28.
    Reeves FG, Nielsen FH, Fahey JC Jr (1993) AIN-93 Purified diets for laboratory rodents: final report of the American institute of nutrition ad hoc writing committee on the reformulation of the ain-76a rodent diet. J Nutr 123:1939–1951Google Scholar
  29. 29.
    Association of Official Analytical Chemists: Official Methods of Analysis—AOAC (2000) 17th ed. Gaithersburg, USAGoogle Scholar
  30. 30.
    Varnier M, Leese GP, Thompson J, Rennie MJ (1995) Stimulatory effect of glutamine on glycogen accumulation in human skeletal muscle. Am J Physiol 269:E309–E315Google Scholar
  31. 31.
    Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310CrossRefGoogle Scholar
  32. 32.
    Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz A (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478CrossRefGoogle Scholar
  33. 33.
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefGoogle Scholar
  34. 34.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  35. 35.
    Dragsted LO (2008) Biomarkers of exposure to vitamins A, C, and E and their relation to lipid and protein oxidation markers. Eur J Nutr 47:3–18. doi:10.1007/s00394-008-2003-1 CrossRefGoogle Scholar
  36. 36.
    Bloomer RJ, Fry AC, Falvo MJ, Moore CA (2007) Protein carbonyls are acutely elevated following single set anaerobic exercise in resistance trained men. J Sci Med Sport 10:411–417. doi:10.1016/j.jsams.2006.07.014 CrossRefGoogle Scholar
  37. 37.
    Armstrong RB (1990) Initial events in exercise-induced muscular injury. Med Sci Sports Exerc 22:429–435Google Scholar
  38. 38.
    Laughlin MH, Simpson T, Sexton WL, Brown OR, Smith JK, Korthuis RJ (1990) Skeletal muscle oxidative capacity, antioxidant enzymes, and exercise training. J Appl Physiol 68:2337–2343Google Scholar
  39. 39.
    Leeuwenburgh C, Hollander J, Leichtweis S, Griffiths M, Gore M, Ji LL (1997) Adaptations of glutathione antioxidant system to endurance training are tissue and muscle fiber specific. Am J Physiol 272:R363–R369Google Scholar
  40. 40.
    Taysi S, Oztasan N, Efe H, Polat MF, Gumustekin K, Siktar E, Canakci E, Akcay F, Dane S, Gul M (2008) Endurance training attenuates the oxidative stress due to acute exhaustive exercise in rat liver. Acta Physiol Hung 95:337–347. doi:10.1556/APhysiol.95.2008.4.2 CrossRefGoogle Scholar
  41. 41.
    Kakarla P, Vadluri G, Reddy Kesireddy S (2005) Response of hepatic antioxidant system to exercise training in aging female rat. J Exp Zool 303A:203–208. doi:10.1002/jez.a.149 CrossRefGoogle Scholar
  42. 42.
    Sen CK (1997) Nutritional biochemistry of cellular glutathione. J Nutr Biochem 8:660–672CrossRefGoogle Scholar
  43. 43.
    Bounous G, Gold P (1991) The biological activity of undenatured dietary whey proteins: role of glutathione. Clin Invest Med 14:296–309Google Scholar
  44. 44.
    Day BJ (2009) Catalase and glutathione peroxidase mimics. Biochem Pharmacol 77:285–296. doi:10.1016/j.bcp.2008.09.029 CrossRefGoogle Scholar
  45. 45.
    Timson BF (1990) Evaluation of animal models for the study of exercise-induced muscle enlargement. J Appl Physiol 69:1935–1945Google Scholar
  46. 46.
    Morifuji M, Sakai K, Sanbongi C, Sugiura K (2005) Dietary whey protein increases liver and skeletal muscle glycogen levels in exercise-trained rats. Brit J Nutr 93:439–445. doi:10.1079/BJN20051373 CrossRefGoogle Scholar
  47. 47.
    Barauna VG, Batista ML Jr, Costa Rosa LF, Casarini DE, Krieger JE, Oliveira EM (2005) Cardiovascular adaptations in rats submitted to a resistance-training model. Clin Exp Pharmacol Physiol 32:249–254CrossRefGoogle Scholar
  48. 48.
    Pellet PL, Young VR (1980) Evaluation of protein quality in experimental animals. In: nutritional evaluation of protein foods. The United Nations University, Tokyo, 41–57Google Scholar
  49. 49.
    Haraguchi FK, Pedrosa ML, de Paula H, dos Santos RC, Silva ME (2010) Evaluation of biological and biochemical quality of whey protein. J Med Food 13:1–5. doi:10.1089/jmf.2009.0222 Google Scholar
  50. 50.
    Norton LE, Layman DK (2006) Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. J Nutr 136:533S–537SGoogle Scholar
  51. 51.
    Boirie Y, Dangin M, Gachon P, Vasson MP, Maubois JL, Beaufrère B (1997) Slow and fast dietary proteins differently modulate postprandial protein secretion. Proc Nat Acad Sci (USA) 94:14930–14935CrossRefGoogle Scholar
  52. 52.
    Tang JE, Moore DR, Kujbida GW, Tarnopolsky MA, Phillips SM (2009) Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol 107:987–992. doi:10.1152/japplphysiol.00076.2009 CrossRefGoogle Scholar
  53. 53.
    Tipton KD, Elliott TA, Cree MG, Aarsland AA, Sanford AP, Wolfe RR (2007) Stimulation of net muscle protein synthesis by whey protein ingestion before and after exercise. Am J Physiol Endocrinol Metab 292:E71–E76. doi:10.1152/ajpendo.00166.2006 CrossRefGoogle Scholar
  54. 54.
    Hayes A, Cribb PJ (2008) Effect of whey protein isolate on strength, body composition and muscle hypertrophy during resistance training. Curr Opin Clin Nutr Metab Care 11:40–44. doi:10.1097/MCO.0b013e3282f2a57d CrossRefGoogle Scholar
  55. 55.
    Maddux BA, See W, Lawrence JC, Goldfine AL, Goldfine ID, Evans JL (2001) Protection against oxidative stress-induced insulin resistance in rat L6 muscle cells by micromolar concentrations of alpha-lipoic acid. Diabetes 50:404–410CrossRefGoogle Scholar
  56. 56.
    Morifuji M, Sakai K, Sanbongi C, Sugiura K (2005) Dietary whey protein downregulates fatty acid synthesis in the liver, but upregulates it in skeletal muscle of exercise-trained rats. Nutrition 21:1052–1058. doi:10.1016/j.nut.2005.01.010 CrossRefGoogle Scholar
  57. 57.
    Van Loon LJ (2004) Use of intramuscular triacylglycerol as a substratesource during exercise in humans. J Appl Physiol 97:1170–1187. doi:10.1152/japplphysiol.00368.2004 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Fabiano Kenji Haraguchi
    • 1
  • Marcelo Eustáquio Silva
    • 1
    • 2
  • Leandro Xavier Neves
    • 3
  • Rinaldo Cardoso dos Santos
    • 2
  • Maria Lúcia Pedrosa
    • 1
    • 4
  1. 1.Research in Biological Sciences—NUPEBOuro Preto UniversityMinas GeraisBrazil
  2. 2.Department of Foods, School of NutritionOuro Preto UniversityMinas GeraisBrazil
  3. 3.Institutional Program for Scientific Initiation Scholarships/National Counsel of Technological and Scientific Development PIBIC/CNPqOuro Preto UniversityMinas GeraisBrazil
  4. 4.Department of Biological Sciences (DCBI)Ouro Preto UniversityMinas GeraisBrazil

Personalised recommendations