European Journal of Nutrition

, Volume 50, Issue 2, pp 145–149 | Cite as

Effect of thiamine administration on metabolic profile, cytokines and inflammatory markers in drug-naïve patients with type 2 diabetes

  • Manuel González-Ortiz
  • Esperanza Martínez-Abundis
  • José A. Robles-Cervantes
  • Viridiana Ramírez-Ramírez
  • Maria G. Ramos-Zavala
Short Communication



To evaluate the effect of thiamine administration on metabolic profile, cytokines and inflammatory markers in drug-naïve patients with type 2 diabetes mellitus (T2DM).


A randomized, double-blind, placebo-controlled, pilot-scale clinical trial was carried out in 24 patients with T2DM. Twelve subjects received thiamine orally (150 mg), once daily during a fasting state for 1 month. An additional 12 patients (control group) were given placebo for the same period of time. Before and after the intervention, fasting glucose, A1C, creatinine, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, very low-density lipoprotein, high-sensitive C-reactive protein, interleukin 6, tumor necrosis factor-alpha, leptin and adiponectin levels were estimated. Wilcoxon’s signed-rank and Mann–Whitney U test were used for statistical analyses.


There were significant decreases in glucose (6.7 ± 1.0 mmol/l vs. 6.0 ± 1.0 mmol/l, p = 0.024) before and after the intervention, respectively, and leptin concentrations (32.9 ± 13.3 ng/ml vs. 26.9 ± 12.8 ng/ml, p = 0.027) before and after the intervention, respectively, with thiamine administration. There were no changes with the rest of the measurements.


Thiamine administration for 1 month decreased glucose and leptin concentrations in drug-naïve patients with T2DM.


Thiamine Metabolic profile Cytokines Inflammatory markers Type 2 diabetes 


  1. 1.
    Blonde L (2007) State of diabetes care in the United States. Am J Manag Care 13(Suppl 2):S36–S40Google Scholar
  2. 2.
    King GL (2008) The role of inflammatory cytokines in diabetes and its complications. J Periodontol 79(Suppl 8):1527–1534CrossRefGoogle Scholar
  3. 3.
    Beltramo E, Berrone E, Tarallo S, Porta M (2008) Effects of thiamine and benfotiamine on intracellular glucose metabolism and relevance in the prevention of diabetic complications. Acta Diabetol 45:131–141CrossRefGoogle Scholar
  4. 4.
    Babaei-Jadidi R, Karachalias N, Kupich C, Ahmed N, Thornalley PJ (2004) High-dose thiamine therapy counters dyslipidaemia in streptozotocin-induced diabetic rats. Diabetologia 47:2235–2246CrossRefGoogle Scholar
  5. 5.
    Thornalley PJ, Babaei-Jadidi R, Al Ali H, Rabbani N, Antonysunil A, Larkin J, Ahmed A, Rayman G, Bodmer CW (2007) High prevalence of low plasma thiamine concentration in diabetes linked to a marker of vascular disease. Diabetologia 50:2164–2170CrossRefGoogle Scholar
  6. 6.
    Thornalley PJ (2005) The potential role of thiamine (vitamin B1) in diabetic complications. Curr Diabetes Rev 1:287–298CrossRefGoogle Scholar
  7. 7.
    Rabbani N, Alam SS, Riaz S, Larkin JR, Akhatar MW, Shafi T, Thornalley PJ (2009) High-dose thiamine therapy for patients with type 2 diabetes and microalbuminuria: a randomized, double-blind placebo-controlled pilot study. Diabetologia 52:208–212CrossRefGoogle Scholar
  8. 8.
    Jeyaseelan L, Rao PSS (1989) Methods of determining sample sizes in clinical trials. Indian Pediatr 26:115–121Google Scholar
  9. 9.
    Robles-Cervantes JA, Martínez-Abundis E, González-Ortiz M, Cárdenas-Camarena L, Hernández-Salazar E, Olvera-Ozuna R (2007) Behavior of insulin sensitivity and its relation to leptin and tumor necrosis factor-alpha in obese women undergoing liposuction: 6-month follow-up. Obes Surg 17:1242–1247CrossRefGoogle Scholar
  10. 10.
    Babaei-Jadidi R, Karachalias N, Ahmed N, Battah S, Thornalley PJ (2003) Prevention of incipient diabetic nephropathy by high-dose thiamine and benfotiamine. Diabetes 52:2110–2120CrossRefGoogle Scholar
  11. 11.
    Marchetti V, Menghini R, Rizza S, Vivanti A, Feccia T, Lauro D, Fukamizu A, Lauro R, Federici M (2006) Benfotiamine counteracts glucose toxicity effects on endothelial progenitor cell differentiation via Akt/FoxO signaling. Diabetes 55:2231–2237CrossRefGoogle Scholar
  12. 12.
    Martin SS, Qasim A, Reilly MP (2008) Leptin resistance: a possible interface of inflammation and metabolism in obesity-related cardiovascular disease. J Am Coll Cardiol 52:1201–1210CrossRefGoogle Scholar
  13. 13.
    Schreeb KH, Freudenthaler S, Vormfelde SV, Gundert-Remy U, Gleiter CH (1997) Comparative bioavailability of two vitamin B1 preparations: benfotiamine and thiamine mononitrate. Eur J Clin Pharmacol 52:319–320Google Scholar
  14. 14.
    Stirban A, Negrean M, Stratmann B, Gawlowski T, Horstmann T, Götting C, Kleesiek K, Mueller-Roesel M, Koschinsky T, Uribarri J, Vlassara H, Tschoepe D (2006) Benfotiamine prevents macro- and microvascular endothelial dysfunction and oxidative stress following a meal rich in advanced glycation end products in individuals with type 2 diabetes. Diabetes Care 29:2064–2071CrossRefGoogle Scholar
  15. 15.
    Du X, Edelstein D, Brownlee M (2008) Oral benfotiamine plus alpha-lipoic acid normalises complication-causing pathways in type 1 diabetes. Diabetologia 51:1930–1932CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Manuel González-Ortiz
    • 1
  • Esperanza Martínez-Abundis
    • 1
  • José A. Robles-Cervantes
    • 1
  • Viridiana Ramírez-Ramírez
    • 1
  • Maria G. Ramos-Zavala
    • 1
  1. 1.Cardiovascular Research Unit, Physiology Department, Health Science University CenterUniversity of Guadalajara and Medical Research Unit in Clinical Epidemiology, Specialties Hospital, Medical Unit of High Specialty, West National Medical Center, Mexican Institute of Social SecurityGuadalajara, Colonia IndependenciaMexico

Personalised recommendations