European Journal of Nutrition

, Volume 50, Issue 2, pp 81–88 | Cite as

Dietary naringenin increases hepatic peroxisome proliferators–activated receptor α protein expression and decreases plasma triglyceride and adiposity in rats

  • Kae Won Cho
  • Yong Ook Kim
  • Juan E. Andrade
  • John R. Burgess
  • Young-Cheul Kim
Original Contribution



Naringenin, a flavonoid present in grapefruit, has recently been shown to exert hypolipidemic and hypocholesterolemic effects, which has a particular importance for protecting against chronic diseases. However, the lipid-lowering potential of naringenin at the concentrations in the dietary range and its underlying mechanisms have yet to be fully elucidated.


The aim of the present study was (1) to investigate the effects of dietary naringenin on plasma and hepatic triglyceride and cholesterol levels and on adipose deposition in rat and (2) to determine the contribution of hepatic peroxisome proliferators–activated receptor α (PPARα) expression to fatty acid oxidation.


Male Long-Evans hooded rats were fed a diet supplemented with naringenin (0.003, 0.006, and 0.012%) for 6 weeks. We analyzed plasma and hepatic lipid contents and determined the protein expression of PPARα, carnitine-palmitoyl transferase 1L (CPT-1), and uncoupling protein 2 (UCP2), all of which are critical genes for fatty acid oxidation.


Naringenin supplementation caused a significant reduction in the amount of total triglyceride and cholesterol in plasma and liver. In addition, naringenin supplementation lowered adiposity and triglyceride contents in parametrial adipose tissue. Naringenin-fed animals showed a significant increase in PPARα protein expression in the liver. Furthermore, expression of CPT-1 and UCP2, both of which are known to be regulated by PPARα, was markedly enhanced by naringenin treatment.


Our results indicate that the activation of PPARα transcription factor and upregulation of its fatty acid oxidation target genes by dietary naringenin may contribute to the hypolipidemic and anti-adiposity effects in vivo.


Naringenin Hypolipidemic effect Anti-adiposity PPAR-α CPT-1 UCP2 In vivo 



This research was in part supported by Grants (S00000005000000) from the University of Massachusetts, Amherst.


  1. 1.
    Joshipura KJ, Ascherio A, Manson JE et al (1999) Fruit and vegetable intake in relation to risk of ischemic stroke. JAMA 282:1233–1239CrossRefGoogle Scholar
  2. 2.
    Gorinstein S, Caspi A, Libman I et al (2006) Red grapefruit positively influences serum triglyceride level in patients suffering from coronary atherosclerosis: studies in vitro and in humans. J Agric Food Chem 54:1887–1892CrossRefGoogle Scholar
  3. 3.
    Kurowska EM, Spence JD, Jordan J et al (2000) HDL-cholesterol-raising effect of orange juice in subjects with hypercholesterolemia. Am J Clin Nutr 72:1095–1100Google Scholar
  4. 4.
    Erlund I (2004) Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr Res 24:851–874CrossRefGoogle Scholar
  5. 5.
    Bok SH, Shin YW, Bae KH et al (2000) Effects of naringin and lovastatin on plasma and hepatic lipids in high-fat and high-cholesterol fed rats. Nutr Res 20:1007–1015CrossRefGoogle Scholar
  6. 6.
    Choi MS, Do KM, Park YS et al (2001) Effect of naringin supplementation on cholesterol metabolism and antioxidant status in rats fed high cholesterol with different levels of vitamin E. Ann Nutr Metab 45:193–201CrossRefGoogle Scholar
  7. 7.
    Lee SH, Park YB, Bae KH et al (1999) Cholesterol-Lowering Activity of Naringenin via Inhibition of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase and Acyl Coenzyme A: Cholesterol Acyltransferase in Rats. Ann Nutr Metab 43:173–180CrossRefGoogle Scholar
  8. 8.
    Santos KFR, Oliveira TT, Nagem TJ et al (1999) Hypolipidaemic effects of naringenin, rutin, nicotinic acid and their associations. Pharmacol Res 40:493–496CrossRefGoogle Scholar
  9. 9.
    Lee CH, Jeong TS, Choi YK et al (2001) Anti-atherogenic effect of citrus flavonoids, naringin and naringenin, associated with hepatic ACAT and aortic VCAM-1 and MCP-1 in high cholesterol-fed rabbits. Biochem Bioph Res Co 284:681–688CrossRefGoogle Scholar
  10. 10.
    Huong DTT, Takahashi Y, Ide T (2006) Activity and mRNA levels of enzymes involved in hepatic fatty acid oxidation in mice fed citrus flavonoids. Nutrition 22:546–552CrossRefGoogle Scholar
  11. 11.
    Borradaile NM, de Dreu LE, Barrett PH, Behrsin CD, Huff MW (2003) Hepatocyte ApoB-containing lipoprotein secretion is decreased by the grapefruit flavonoid, naringenin, via inhibition of MTP-mediated microsomal triglyceride accumulation. Biochemistry 42:1283–1291CrossRefGoogle Scholar
  12. 12.
    Borradaile NM, de Dreu LE, Huff MW (2003) Inhibition of net HepG2 cell apolipoprotein B secretion by the citrus flavonoid naringenin involves activation of phosphatidylinositol 3-kinase, independent of insulin receptor substrate-1 phosphorylation. Diabetes 52:2554–2561CrossRefGoogle Scholar
  13. 13.
    Wilcox LJ, Borradaile NM, de Dreu LE, Huff MW (2001) Secretion of hepatocyte apoB is inhibited by the flavonoids, naringenin and hesperetin, via reduced activity and expression of ACAT2 and MTP. J Lipid Res 42:725–734Google Scholar
  14. 14.
    Allister EM, Borradaile NM, Edwards JY, Huff MW (2005) Inhibition of microsomal triglyceride transfer protein expression and apolipoprotein B100 secretion by the citrus flavonoid naringenin and by insulin involves activation of the mitogen-activated protein kinase pathway in hepatocytes. Diabetes 54:1676–1683CrossRefGoogle Scholar
  15. 15.
    Kumpulainen J, Lehtonen M, Mattila P (1999) Trolox equivalent antioxidant capacity of average flavonoids intake in Finland. In: Kumpulainen JT, Salonen JT (ed) Natural antioxidants and anticarcinogens in nutrition, health and disease, Cambridge, pp 141–150Google Scholar
  16. 16.
    Vasilopoulou E, Georga K, Joergensen MB, Naska A, Trichopoulou A (2005) The antioxidant properties of greek foods and the flavonoid content of the mediterranean menu. Curr Med Chem 5:33–45Google Scholar
  17. 17.
    Foxworthy PS, Eacho PI (1991) Effect of the peroxisome proliferator LY171883 on triglyceride accumulation in rats fed a fat-free diet. Biochem Pharmacol 42:1487–1491CrossRefGoogle Scholar
  18. 18.
    Staels B, Dallongeville J, Auwerx J, Schoonjans K et al (1998) Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 98:2088–2093Google Scholar
  19. 19.
    Lee HJ, Choi SS, Park MK, An YJ et al (2002) Fenofibrate lowers abdominal and skeletal adiposity and improves insulin sensitivity in OLETF rats. Biochem Bioph Res Co 296:293–299CrossRefGoogle Scholar
  20. 20.
    Kim S, Shin HJ, Kim SY, Kim JH et al (2004) Genistein enhances expression of genes involved in fatty acid catabolism through activation of PPARα. Mol Cell Endocrinol 220:51–58CrossRefGoogle Scholar
  21. 21.
    Murase T, Nagasawa A, Suzuki J, Hase T, Tokimitsu I (2002) Beneficial effects of tea catechins on diet-induced obesity: stimulation of lipid catabolism in the liver. Int J Obes Relat Metab Disord 26:1459–1464CrossRefGoogle Scholar
  22. 22.
    Liu Li, Song S, Kun Z, Zhi-Qiang N et al (2008) Naringenin and hesperetin, two flavonoids derived from Citrus aurantium up-regulate transcription of adiponectin. Phytother Res 22:1400–1403CrossRefGoogle Scholar
  23. 23.
    Allain CC, Poon LS, Chan CSG, Richmond W, Fu PC (1974) Enzymatic determination of total serum cholesterol. Clin Chem 20:470–475Google Scholar
  24. 24.
    Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509Google Scholar
  25. 25.
    Hsueh CT, Wu YC, Schwartz GK (2001) UCN-01 suppresses E2F–1 mediated by ubiquitin-proteasome-dependent degradation. Clin Cancer Res 7:669–674Google Scholar
  26. 26.
    Song J, Lu Y, Pang S, Chiu R (2004) An internal control for immunoblot analysis using the blotted membrane. Anal Biochem 331:201–203Google Scholar
  27. 27.
    Brady PS, Marine KA, Brady LJ, Ramsay RR (1989) Co-ordinate induction of hepatic mitochondrial and peroxisomal carnitine acyltransferase synthesis by diet and drugs. Biochem J 260:93–100Google Scholar
  28. 28.
    Kelly LJ, Vicario PP, Thompson GM, Candelore MR et al (1998) Peroxisome proliferator-activated receptors γ and α mediate in vivo regulation of uncoupling protein (UCP-1, UCP-2, UCP-3) gene expression. Endocrinology 139:4920–4927CrossRefGoogle Scholar
  29. 29.
    Mascaro C, Acosta E, Ortiz JA, Marrero PF et al (1998) Control of human muscle-type carnitine palmitoyltransferase I gene transcription by peroxisome proliferator-activated receptor. J Biol Chem 273:8560–8563CrossRefGoogle Scholar
  30. 30.
    Knekt P, Kumpulainen J, Jarvinen R, Rissanen H et al (2002) Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 76:560–568Google Scholar
  31. 31.
    Wilcox LJ, Borradaile NM, Huff MW (1999) Antiatherogenic properties of naringenin, a citrus flavonoid. Cardiovasc Drug Rev 17:160–178CrossRefGoogle Scholar
  32. 32.
    Wood N (2004) Hepatolipidemic effects of naringenin in high cornstarch-versus high coconut oil-fed rats. J Med Food 7:315–319Google Scholar
  33. 33.
    Kim S, Kim H, Lee M, Jeon S et al (2006) Naringin time-dependently lowers hepatic cholesterol biosynthesis and plasma cholesterol in rats fed high-fat and high-cholesterol diet. J Med Food 9:582–586CrossRefGoogle Scholar
  34. 34.
    Lee MK, Moon SS, Lee SE et al (2003) Naringenin 7-O-cetyl ether as inhibitor of HMG-CoA reductase and modulator of plasma and hepatic lipids in high cholesterol-fed rats. Bioorgan Med Chem 11:393–398CrossRefGoogle Scholar
  35. 35.
    Mouly PP, Arzouyan CR, Gaydou EM, Estienne JM (1994) Differentiation of citrus juices by factorial discriminant analysis using liquid chromatography of flavanone glycosides. J Agr Food Chem 42:70–79CrossRefGoogle Scholar
  36. 36.
    Kasim SE, LeBoeuf RC, Khilnani S, Tallapaka L et al (1992) Mechanisms of triglyceride-lowering effect of an HMG-CoA reductase inhibitor in a hypertriglyceridemic animal model, the Zucker obese rat. J Lipid Res 33:1–7Google Scholar
  37. 37.
    Roglans N, Sanguino E, Peris C, Alegret M et al (2002) Atorvastatin treatment induced peroxisome proliferator-activated receptor α expression and decreased plasma nonesterified fatty acids and liver triglyceride in fructose-fed rats. J Pharmalcol Exp Ther 302:232–239CrossRefGoogle Scholar
  38. 38.
    Neve BP, Fruchart JC, Staels B (2000) Role of the peroxisome proliferator-activated receptors (PPAR) in atherosclerosis. Biochem Pharmacol 60:1245–1250CrossRefGoogle Scholar
  39. 39.
    Chitturi S, Farrell GC (2001) Etiopathogenesis of Nonalcoholic Steatohepatitis. Semin Liver Dis 21:027–042CrossRefGoogle Scholar
  40. 40.
    Guerre-Millo M, Gervois P, Raspe E, Madsen L et al (2000) Peroxisome proliferator-activated receptor alpha activators improve insulin sensitivity and reduce adiposity. J Biol Chem 275:16638–16642CrossRefGoogle Scholar
  41. 41.
    Keller J, Collet P, Bianchi A, Huin C et al (2000) Implications of peroxisome proliferator-activated receptors (PPARs) in development cell life status and disease. Int J Dev Biol 44:429–442Google Scholar
  42. 42.
    Mulvihill EE, Allister EM, Sutherland BG, Telford DE et al (2009) Naringenin prevents dyslipidemia, apolipoprotein B overproduction, and hyperinsulinemia in LDL receptor-null mice with diet-induced insulin resistance. Diabetes 58:2198–2210CrossRefGoogle Scholar
  43. 43.
    Kim S, Sohn I, Lee YS, Lee YS (2005) Hepatic gene expression profiles are altered by genistein supplementation in mice with diet-induced obesity. J Nutr 135:33–41Google Scholar
  44. 44.
    Naaz A, Yellayi S, Zakroczymski MA, Bunick D et al (2003) The soy isoflavone genistein decreases adipose deposition in mice. Endocrinology 144:3315–3320CrossRefGoogle Scholar
  45. 45.
    Kannappan S, Anuradha CV (2009) Naringenin enhances insulin-stimulated tyrosine phosphorylation and improves the cellular actions of insulin in a dietary model of metabolic syndrome. Eur J Nutr. doi:  10.1007/s00394-009-0054-6
  46. 46.
    Kawada T, Takahashi N, Fushiki T (2001) Biochemical and physiological characteristics of fat cell. J Nutr Sci Vitaminol (Tokyo) 47:1–12Google Scholar
  47. 47.
    Morikawa K, Nonaka M, Mochizuki H, Handa K et al (2008) Naringenin and hesperetin induce growth arrest, apoptosis, and cytoplasmic fat deposit in human preadipocytes. J Agric Food Chem 56:11030–11037CrossRefGoogle Scholar
  48. 48.
    Okuno A, Tamemoto H, Tobe K, Ueki K et al (1998) Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest 101:1354–1361CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Kae Won Cho
    • 1
  • Yong Ook Kim
    • 1
  • Juan E. Andrade
    • 2
  • John R. Burgess
    • 2
  • Young-Cheul Kim
    • 1
  1. 1.Department of NutritionUniversity of MassachusettsAmherstUSA
  2. 2.Department of Foods and NutritionPurdue UniversityWest LafayetteUSA

Personalised recommendations