European Journal of Nutrition

, Volume 50, Issue 1, pp 19–29 | Cite as

Effects of de-alcoholised wines with different polyphenol content on DNA oxidative damage, gene expression of peripheral lymphocytes, and haemorheology: an intervention study in post-menopausal women

  • Lisa GiovannelliEmail author
  • Vanessa Pitozzi
  • Cristina Luceri
  • Lucia Giannini
  • Simona Toti
  • Simonetta Salvini
  • Francesco Sera
  • Jean-Marc Souquet
  • Veronique Cheynier
  • Francesco Sofi
  • Lucia Mannini
  • Anna Maria Gori
  • Rosanna Abbate
  • Domenico Palli
  • Piero Dolara
Original Contribution



Epidemiological studies suggest that a moderate consumption of wine is associated with a reduced risk of cardiovascular diseases and with a reduced mortality for all causes, possibly due to increased antioxidant defences. The present intervention study was undertaken to evaluate the in vivo effects of wine polyphenols on gene expression in humans, along with their supposed antioxidant activity.


Blood haemorheology and platelet function were also evaluated. In order to avoid interferences from alcohol, we used de-alcoholised wine (DAW) with different polyphenol content. A randomised cross-over trial of high-proanthocyanidin (PA) red DAW (500 mL/die, PA dose = 7 mg/kg b.w.) vs. low-PA rosé DAW (500 mL/die, PA dose = 0.45 mg/kg) was conducted in 21 post-menopausal women in Florence, Italy. Oxidative DNA damage by the comet assay and gene expression by microarray was measured in peripheral blood lymphocytes, collected during the study period. Blood samples were also collected for the evaluation of haematological, haemostatic, haemorheological, and inflammatory parameters.


The results of the present study provide evidence that consumption of substantial amounts of de-alcoholised wine for 1 month does not exert a protective activity towards oxidative DNA damage, nor modifies significantly the gene expression profile of peripheral lymphocytes, whereas it shows blood-fluidifying actions, expressed as a significant decrease in blood viscosity. However, this effect does not correlate with the dosage of polyphenols of the de-alcoholised wine.


More intervention studies are needed to provide further evidence of the health-protective effects of wine proanthocyanidins.


Proanthocyanidins Wine DNA damage Comet assay Microarray Transcriptomics 



We are very grateful to the volunteers who donated their time and adjusted their ordinary lifestyle to participate in this demanding study. We also thank Magali Bes (INRA-Unité Expérimentale de Pech Rouge, Gruissan, France) for making the DAW. The study was supported by the the EU program FLAVO 2005-513960, the Network of Excellence in Nutrigenomics, NuGO FOOD-CT-2004-506360, the Ministero della Università e della Ricerca Scientifica e Tecnologica (Italy), and the University of Florence.

Conflict of interest statement

The authors declare that they have no conflict of interest.


  1. 1.
    WHO (2003) World Health ReportGoogle Scholar
  2. 2.
    WCRF—World Cancer Prevention Fund and American Institute for Cancer Research (2007). Food, nutrition, physical activity and the prevention of cancer: a global perspective.
  3. 3.
    Biesalski HK (2007) Polyphenols and inflammation: basic interactions. Curr Opin Clin Nutr Metab Care 10(6):724–728CrossRefGoogle Scholar
  4. 4.
    Thomasset SC, Berry DP, Garcea G, Marczylo T, Steward WP, Gescher AJ (2007) Dietary polyphenolic phytochemicals-promising cancer chemopreventive agents in humans? A review of their clinical properties. Int J Cancer 120(3):451–458CrossRefGoogle Scholar
  5. 5.
    Zern TL, Fernandez ML (2005) Cardioprotective effects of dietary polyphenols. J Nutr 135(10):2291–2294Google Scholar
  6. 6.
    Scalbert A, Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130(Suppl 8S):2073S–2085SGoogle Scholar
  7. 7.
    Szmitko PE, Verma S (2005) Antiatherogenic potential of red wine: clinician update. Am J Physiol Heart Circ Physiol 288(5):H2023–H2030CrossRefGoogle Scholar
  8. 8.
    Ruf JC (2003) Overview of epidemiological studies on wine, health and mortality. Drugs Exp Clin Res 29(5–6):173–179Google Scholar
  9. 9.
    Covas MI, Gambert P, Fitó M, de la Torre R (2010) Wine and oxidative stress: up-to-date evidence of the effects of moderate wine consumption on oxidative damage in humans. Atherosclerosis 208(2):297–304CrossRefGoogle Scholar
  10. 10.
    Leighton F, Cuevas A, Guasch V, Pérez DD, Strobel P, San Martín A, Urzua U, Díez MS, Foncea R, Castillo O, Mizón C, Espinoza MA, Urquiaga I, Rozowski J, Maiz A, Germain A (1999) Plasma polyphenols and antioxidants, oxidative DNA damage and endothelial function in a diet and wine intervention study in humans. Drugs Exp Clin Res 25(2–3):133–141Google Scholar
  11. 11.
    Tsang C, Higgins S, Duthie GG, Duthie SJ, Howie M, Mullen W, Lean ME, Crozier A (2005) The influence of moderate red wine consumption on antioxidant status and indices of oxidative stress associated with CHD in healthy volunteers. Br J Nutr 93(2):233–240CrossRefGoogle Scholar
  12. 12.
    Chopra M, Fitzsimons PE, Strain JJ, Thurnham DI, Howard AN (2000) Nonalcoholic red wine extract and quercetin inhibit LDL oxidation without affecting plasma antioxidant vitamin and carotenoid concentrations. Clin Chem 46:1162–1170Google Scholar
  13. 13.
    Abu-Amsha Caccetta R, Burke V, Mori TA, Beilin LJ, Puddey IB, Croft KD (2001) Red wine polyphenols, in the absence of alcohol, reduce lipid peroxidative stress in smoking subjects. Free Radic Biol Med 30(6):636–642CrossRefGoogle Scholar
  14. 14.
    de Rijke YB, Demacker PN, Assen NA, Sloots LM, Katan MB, Stalenhoef AF (1996) Red wine consumption does not affect oxidizability of low-density lipoproteins in volunteers. Am J Clin Nutr 63(3):329–334Google Scholar
  15. 15.
    Cartron E, Fouret G, Carbonneau MA, Lauret C, Michel F, Monnier L, Descomps B, Léger CL (2003) Red-wine beneficial long-term effect on lipids but not on antioxidant characteristics in plasma in a study comparing three types of wine-description of two O-methylated derivatives of gallic acid in humans. Free Radic Res 37(9):1021–1035CrossRefGoogle Scholar
  16. 16.
    van Golde PH, Sloots LM, Vermeulen WP, Wielders JP, Hart HC, Bouma BN, van de Wiel A (1999) The role of alcohol in the anti low density lipoprotein oxidation activity of red wine. Atherosclerosis 147(2):365–370CrossRefGoogle Scholar
  17. 17.
    Luceri C, Caderni G, Sanna A, Dolara P (2002) Red wine and black tea polyphenols modulate the expression of cycloxygenase-2, inducible nitric oxide synthase and glutathione-related enzymes in azoxymethane-induced F344 rat colon tumors. J Nutr 132(6):1376–1379Google Scholar
  18. 18.
    Dolara P, Luceri C, De Filippo C, Femia AP, Giovannelli L, Caderni G, Cecchini C, Silvi S, Orpianesi C, Cresci A (2005) Red wine polyphenols influence carcinogenesis, intestinal microflora, oxidative damage and gene expression profiles of colonic mucosa in F344 rats. Mutat Res 591(1–2):237–246Google Scholar
  19. 19.
    Del Bas JM, Fernández-Larrea J, Blay M, Ardèvol A, Salvadó MJ, Arola L, Bladé C (2005) Grape seed procyanidins improve atherosclerotic risk index and induce liver CYP7A1 and SHP expression in healthy rats. FASEB J 19(3):479–481Google Scholar
  20. 20.
    Iijima K, Yoshizumi M, Ouchi Y (2002) Effect of red wine polyphenols on vascular smooth muscle cell function–molecular mechanism of the ‘French paradox’. Mech Ageing Dev 123(8):1033–1039CrossRefGoogle Scholar
  21. 21.
    Canali R, Ambra R, Stelitano C, Mattivi F, Scaccini C, Virgili F (2007) A novel model to study the biological effects of red wine at the molecular level. Br J Nutr 97(6):1053–1058CrossRefGoogle Scholar
  22. 22.
    Pal S, Ho N, Santos C, Dubois P, Mamo J, Croft K, Allister E (2003) Red wine polyphenolics increase LDL receptor expression and activity and suppress the secretion of ApoB100 from human HepG2 cells. J Nutr 133(3):700–706Google Scholar
  23. 23.
    Tzoulaki I, Murray GD, Lee AJ, Rumley A, Lowe GD, Fowkes FG (2007) Relative value of inflammatory, hemostatic, and rheological factors for incident myocardial infarction and stroke: the Edinburgh Artery Study. Circulation 115(16):2119–2127CrossRefGoogle Scholar
  24. 24.
    Davì G, Patrono C (2007) Platelet activation and atherothrombosis. N Engl J Med 357(24):2482–2494CrossRefGoogle Scholar
  25. 25.
    Sofi F, Buccioni A, Cesari F, Gori AM, Minieri S, Mannini L, Casini A, Gensini GF, Abbate R, Antongiovanni M (2010) Effects of a dairy product (pecorino cheese) naturally rich in cis-9, trans-11 conjugated linoleic acid on lipid, inflammatory and haemorheological variables: a dietary intervention study. Nutr Metab Cardiovasc Dis 20(2):117–124CrossRefGoogle Scholar
  26. 26.
    Pisani P, Faggiano F, Krogh V, Palli D, Vineis P, Berrino F (1997) Relative validity and reproducibility of a food frequency dietary questionnaire for use in the Italian EPIC centres. Int J Epidemiol 26(Suppl 1):S152–S160CrossRefGoogle Scholar
  27. 27.
    Slimani N, Deharveng G, Charrondière RU, van Kappel AL, Ocké MC, Welch A, Lagiou A, van Liere M, Agudo A, Pala V, Brandstetter B, Andren C, Stripp C, van Staveren WA, Riboli E (1999) Structure of the standardized computerized 24-h diet recall interview used as reference method in the 22 centers participating in the EPIC project. European Prospective Investigation into Cancer and Nutrition. Comput Methods Programs Biomed 58(3):251–266Google Scholar
  28. 28.
    Pala V, Sieri S, Palli D et al (2003) Diet in the Italian EPIC cohorts: presentation of data and methodological issues. Tumori 89:594–607Google Scholar
  29. 29.
    Morel-Salmi C, Souquet JM, Bes M, Cheynier V (2006) The effect of flash release treatment on phenolic extraction and wine composition. J Agric Food Chem 54:4270–4276CrossRefGoogle Scholar
  30. 30.
    Analyse des moûts et des vins (1990) Réglement (CEE) n°2676/90 de la commision du 17 septembre 1990 déterminant des méthodes d’analyse communautaires applicables dans le secteur du vin. Journal Officiel des Communautés EuropéennesGoogle Scholar
  31. 31.
    Salvini S, Parpinel M, Gnagnarella P, Maisonneuve P, Turrini A (1998) Banca Dati di Composizione degli Alimenti per Studi Epidemiologici in Italia. Istituto Europeo di Oncologia, MilanoGoogle Scholar
  32. 32.
    Giovannelli L, Pitozzi V, Riolo S, Dolara P (2003) Measurement of DNA breaks and oxidative damage in polymorphonuclear and mononuclear white blood cells: a novel approach using the comet assay. Mutat Res 538(1–2):71–80Google Scholar
  33. 33.
    Pitozzi V, Pallotta S, Balzi M, Bucciolini M, Becciolini A, Dolara P, Giovannelli L (2006) Calibration of the comet assay for the measurement of DNA damage in mammalian cells. Free Radic Res 40(11):1149–1154CrossRefGoogle Scholar
  34. 34.
    Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98(9):5116–5121CrossRefGoogle Scholar
  35. 35.
    Jones B, Kenward MG (1987) Modelling binary data from a three-period cross-over trial. Stat Med 6(5):555–564CrossRefGoogle Scholar
  36. 36.
    Sharpe PC, McGrath LT, McClean E, Young IS, Archbold GP (1995) Effect of red wine consumption on lipoprotein (a) and other risk factors for atherosclerosis. QJM 88(2):101–108Google Scholar
  37. 37.
    van der Gaag MS, Sierksma A, Schaafsma G, van Tol A, Geelhoed-Mieras T, Bakker M, Hendriks HF (2000) Moderate alcohol consumption and changes in postprandial lipoproteins of premenopausal and postmenopausal women: a diet-controlled, randomized intervention study. J Womens Health Gend Based Med 9(6):607–616CrossRefGoogle Scholar
  38. 38.
    Velcheva I, Antonova N, Titianova E, Damianov P, Dimitrov N, Ivanov I (2006) Hemorheological parameters in correlation with the risk factors for carotid atherosclerosis. Clin Hemorheol Microcirc 35(1–2):195–198Google Scholar
  39. 39.
    Nelson JL, Robergs RA (2007) Exploring the potential ergogenic effects of glycerol hyperhydration Sports Med 37(11):981–1000Google Scholar
  40. 40.
    Miller A, Adeli K (2008) Dietary fructose and the metabolic syndrome. Curr Opin Gastroenterol 24(2):204–209CrossRefGoogle Scholar
  41. 41.
    Goldberg DM, Yan J, Soleas GJ (2003) Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clin Biochem 36(1):79–87CrossRefGoogle Scholar
  42. 42.
    Dragoni S, Gee J, Bennett R, Valoti M, Sgaragli G (2006) Red wine alcohol promotes quercetin absorption and directs its metabolism towards isorhamnetin and tamarixetin in rat intestine in vitro. Br J Pharmacol 147(7):765–771CrossRefGoogle Scholar
  43. 43.
    Scholz S, Williamson G (2007) Interactions affecting the bioavailability of dietary polyphenols in vivo. Int J Vitam Nutr Res 77(3):224–235CrossRefGoogle Scholar
  44. 44.
    Zvetkova E, Wirleitner B, Tram NT, Schennach H, Fuchs D (2001) Aqueous extracts of Crinum latifolium (L.) and Camellia sinensis show immunomodulatory properties in human peripheral blood mononuclear cells. Int Immunopharmacol 1:2143–2150CrossRefGoogle Scholar
  45. 45.
    Watzl B, Bub A, Briviba K, Rechkemmer G (2002) Acute intake of moderate amounts of red wine or alcohol has no effect on the immune system of healthy men. Eur J Nutr 41(6):264–270CrossRefGoogle Scholar
  46. 46.
    Watzl B, Bub A, Pretzer G, Roser S, Barth SW, Rechkemmer G (2004) Daily moderate amounts of red wine or alcohol have no effect on the immune system of healthy men. Eur J Clin Nutr 58(1):40–45CrossRefGoogle Scholar
  47. 47.
    Takkouche B, Regueira-Méndez C, García-Closas R, Figueiras A, Gestal-Otero JJ, Hernán MA (2002) Intake of wine, beer, and spirits and the risk of clinical common cold. Am J Epidemiol 155(9):853–858CrossRefGoogle Scholar
  48. 48.
    Larrosa M, Luceri C, Vivoli E, Pagliuca C, Lodovici M, Moneti G, Dolara P (2009) Polyphenol metabolites from colonic microbiota exert anti-inflammatory activity on different inflammation models. Mol Nutr Food Res 53(8):1044–1054CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Lisa Giovannelli
    • 1
    Email author
  • Vanessa Pitozzi
    • 1
  • Cristina Luceri
    • 1
  • Lucia Giannini
    • 1
  • Simona Toti
    • 1
  • Simonetta Salvini
    • 2
  • Francesco Sera
    • 2
  • Jean-Marc Souquet
    • 3
  • Veronique Cheynier
    • 3
  • Francesco Sofi
    • 4
    • 5
  • Lucia Mannini
    • 6
  • Anna Maria Gori
    • 6
    • 7
  • Rosanna Abbate
    • 5
    • 6
  • Domenico Palli
    • 2
  • Piero Dolara
    • 1
  1. 1.Department of Preclinical and Clinical PharmacologyUniversity of FlorenceFlorenceItaly
  2. 2.Molecular and Nutritional Epidemiology UnitISPO Cancer Prevention and Research InstituteFlorenceItaly
  3. 3.INRA, UMR1083 Sciences Pour l’OenologieMontpellierFrance
  4. 4.Regional Agency of NutritionAzienda Ospedaliero-Universitaria CareggiFlorenceItaly
  5. 5.Centro Interdipartimentale per la Ricerca e la Valorizzazione degli AlimentiUniversity of FlorenceFlorenceItaly
  6. 6.Department of Medical and Surgical Critical Care, Thrombosis CentreUniversity of FlorenceFlorenceItaly
  7. 7.Centro S. Maria agli UliviFondazione Don Carlo Gnocchi IRCCS, ImprunetaFlorenceItaly

Personalised recommendations