Advertisement

European Journal of Nutrition

, Volume 49, Issue 7, pp 435–446 | Cite as

Effects of oxysterols on cell viability, inflammatory cytokines, VEGF, and reactive oxygen species production on human retinal cells: cytoprotective effects and prevention of VEGF secretion by resveratrol

  • B. Dugas
  • S. Charbonnier
  • M. Baarine
  • K. Ragot
  • D. Delmas
  • F. Ménétrier
  • J. Lherminier
  • L. Malvitte
  • T. Khalfaoui
  • A. Bron
  • C. Creuzot-Garcher
  • N. Latruffe
  • Gérard Lizard
Original Contribution

Abstract

Background and aims

Oxysterols are assumed to play important roles in age-related macular degeneration, a major cause of blindness. So we characterized the cytotoxic, oxidative, inflammatory, and angiogenic activities of oxysterols (7β-hydroxycholesterol (7β-OH), 7-ketocholesterol (7KC), 25-hydroxycholesterol (25-OH)) in human retinal ARPE-19 cells, and evaluated the protective effects of resveratrol (Rsv: 1 μM), a polyphenol from red wine.

Methods

ARPE-19 cells were treated with 7β-OH, 7KC, or 25-OH (5–40 μg/mL; 24–48 h) without or with Rsv. Cell viability was determined using trypan blue and the MTT assay. Cell death was characterized by electron microscopy and in situ detection of activated caspases with fluorochrome-labeled inhibitors of caspases. Reactive oxygen species (ROS) production was measured with hydroethidine. ELISA methods and a cytometric bead assay were used to quantify cytokines involved in inflammation (IL-8, IL-1β, IL-6, IL-10, IL-12p70, TNF-α, MCP-1) and VEGF.

Results

7β-OH and 7KC triggered a caspase-independent cell death process associated with the presence of multilamellar cytoplasmic structures evocating phospholipidosis, increased ROS production, and IL-8 secretion. 7β-OH enhanced VEGF secretion. No cytotoxic effects were identified with 25-OH, which highly stimulated ROS production, MCP-1, and VEGF secretion. With oxysterols, no IL-10, TNF-α, and IL-12p70 secretion were detected. 25-OH induced IL-8 secretion through the MEK/ERK½ signaling pathway, and Rsv showed cytoprotective activities and inhibited VEGF secretion.

Conclusion

7β-OH, 7KC, and 25-OH have cytotoxic, oxidative, inflammatory, and/or angiogenic activities on ARPE-19 cells. As Rsv has some protective effects against oxysterol-induced cell death and VEGF secretion it could be valuable in ARMD treatment.

Keywords

ARPE-19 cells Caspase-independent cell death Inflammatory cytokines Oxysterols Phospholipidosis Resveratrol Reactive oxygen species VEGF 

Notes

Acknowledgments

This work was supported by grants from the INSERM, and the University Hospital of Dijon (CHU de Dijon). The authors are indebted to Ms. Linda Northrup for reviewing the English version of the manuscript.

References

  1. 1.
    Klein R, Klein BE, Linton KL (1992) Prevalence of age-related maculopathy. The Beaver dam eye study. Ophthalmology 99:933–943Google Scholar
  2. 2.
    Malvitte L, Montange T, Joffre C, Vejux A, Maïza C, Bron A, Creuzot-Garcher C, Lizard G (2006) Analogies between atherosclerosis and age-related maculopathy: expected roles of oxysterols. J Fr Ophtalmol 29:570–578CrossRefGoogle Scholar
  3. 3.
    Curcio CA, Presley JB, Malek G, Medeiros NE, Avery DV, Kruth HS (2005) Esterified and unesterified cholesterol in drusen and basal deposits of eyes with age-related maculopathy. Exp Eye Res 81:731–741CrossRefGoogle Scholar
  4. 4.
    Kopitz J, Holz FG, Kaemmerer E, Schutt F (2004) Lipids and lipid peroxidation products in the pathogenesis of age-related macular degeneration. Biochimie 86:825–831CrossRefGoogle Scholar
  5. 5.
    Rodriguez IR, Fliesler SJ (2009) Photodamage generates 7-keto- and 7-hydroxycholesterol in the rat retina via a free radical-mediated mechanism. Photochem Photobiol 85:1116–1125CrossRefGoogle Scholar
  6. 6.
    Javitt NB, Javitt JC (2009) The retinal oxysterol pathway: a unifying hypothesis for the cause of age-related macular degeneration. Curr Opin Ophthalmol 20:151–157CrossRefGoogle Scholar
  7. 7.
    Malvitte L, Montange T, Vejux A, Joffre C, Bron A, Creuzot-Garcher C, Lizard G (2008) Activation of a caspase-3-independent mode of cell death associated with lysosomal destabilization in cultured human retinal pigment epithelial cells (ARPE-19) exposed to 7beta-hydroxycholesterol. Curr Eye Res 33:769–781Google Scholar
  8. 8.
    Elner SG, Elner VM, Field MG, Park S, Heckenlively JR, Petty HR (2008) Retinal flavoprotein autofluorescence as a measure of retinal health. Trans Am Ophthalmol Soc 106:215–222Google Scholar
  9. 9.
    Dunaief JL, Dentchev T, Ying GS, Milam AH (2002) The role of apoptosis in age-related macular degeneration. Arch Ophthalmol 120:1435–1442Google Scholar
  10. 10.
    Ong JM, Aoki AM, Seigel GM, Sacerio I, Castellon R, Nesburn AB, Kenney MC (2003) Oxysterol-induced toxicity in R28 and ARPE-19 cells. Neurochem Res 28:883–891CrossRefGoogle Scholar
  11. 11.
    Rodriguez IR, Alam S, Lee JW (2004) Cytotoxicity of oxidized low-density lipoprotein in cultured RPE cells is dependent on the formation of 7-ketocholesterol. Invest Ophthalmol Vis Sci 45:2830–2837CrossRefGoogle Scholar
  12. 12.
    Chang JY, Liu LZ (1998) Toxicity of cholesterol oxides on cultured neuroretinal cells. Curr Eye Res 17:95–103CrossRefGoogle Scholar
  13. 13.
    Joffre C, Leclere L, Buteau B, Martine L, Cabaret S, Malvitte L, Acar N, Lizard G, Bron A, Creuzot-Garcher C, Bretillon L (2007) Oxysterols induced inflammation and oxidation in primary porcine retinal pigment epithelial cells. Curr Eye Res 32:271–280CrossRefGoogle Scholar
  14. 14.
    Luthra S, Fardin B, Dong J, Hertzog D, Kamjoo S, Gebremariam S, Butani V, Narayanan R, Mungcal JK, Kuppermann BD, Kenney MC (2006) Activation of caspase-8 and caspase-12 pathways by 7-ketocholesterol in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 47:5569–5575CrossRefGoogle Scholar
  15. 15.
    Moreira EF, Larrayoz IM, Lee JW, Rodríguez IR (2009) 7-Ketocholesterol is present in lipid deposits in the primate retina: potential implication in the induction of VEGF and CNV formation. Invest Ophthalmol Vis Sci 50:523–532CrossRefGoogle Scholar
  16. 16.
    Gordiyenko N, Campos M, Lee JW, Fariss RN, Sztein J, Rodriguez IR (2004) RPE cells internalize low-density lipoprotein (LDL) and oxidized LDL (oxLDL) in large quantities in vitro and in vivo. Invest Ophthalmol Vis Sci 45:2822–2829CrossRefGoogle Scholar
  17. 17.
    Lemaire S, Lizard G, Monier S, Miguet C, Gueldry S, Volot F, Gambert P, Néel D (1998) Different patterns of IL-1β secretion, adhesion molecule expression and apoptosis induction in human endothelial cells treated with 7α-, 7β-hydroxycholesterol, or 7-ketocholesterol. FEBS Lett 440:434–439CrossRefGoogle Scholar
  18. 18.
    Ramos MA, Kuzuya M, Esaki T, Miura S, Satake S, Asai T, Kanda S, Hayashi T, Iguchi A (1998) Induction of macrophage VEGF in response to oxidized LDL and VEGF accumulation in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol 18:1188–1196Google Scholar
  19. 19.
    Lemaire-Ewing S, Prunet C, Montange T, Vejux A, Berthier A, Bessède G, Corcos L, Gambert P, Néel D, Lizard G (2005) Comparison of the cytotoxic, pro-oxidant and pro-inflammatory characteristics of different oxysterols. Cell Biol Toxicol 21:97–114CrossRefGoogle Scholar
  20. 20.
    Prunet C, Montange T, Vejux A, Laubriet A, Rohmer JF, Riedinger JM, Athias A, Lemaire-Ewing S, Néel D, Petit JM, Steinmetz E, Brenot R, Gambert P, Lizard G (2006) Multiplexed flow cytometric analyses of pro- and anti-inflammatory cytokines in the culture media of oxysterol-treated human monocytic cells and in the sera of atherosclerotic patients. Cytometry A 69:359–373Google Scholar
  21. 21.
    Delmas D, Jannin B, Latruffe N (2005) Resveratrol: preventing properties against vascular alterations and ageing. Mol Nutr Food Res 49:377–395CrossRefGoogle Scholar
  22. 22.
    Rahman I, Biswas SK, Kirkham PA (2006) Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol 72:1439–1452CrossRefGoogle Scholar
  23. 23.
    de Kok TM, van Breda SG, Manson NM (2008) Mechanisms of combined action of different chemopreventive dietary compounds. Eur J Nutr 47(suppl 2):51–59CrossRefGoogle Scholar
  24. 24.
    Dann JM, Sykes PH, Mason DR, Evans JJ (2009) Regulation of vascular endothelial growth factor in endometrial tumour cells by resveratrol and EGCG. Gynecol Oncol 113:374–378CrossRefGoogle Scholar
  25. 25.
    Pedruzzi E, Guichard C, Ollivier V, Driss F, Fay M, Prunet C, Marie JC, Pouzet C, Samadi M, Elbim C, O’dowd Y, Bens M, Vandewalle A, Gougerot-Pocidalo MA, Lizard G, Ogier-Denis E (2004) NAD(P)H oxidase Nox-4 mediates 7-ketocholesterol-induced endoplasmic reticulum stress and apoptosis in human aortic smooth muscle cells. Mol Cell Biol 24:10703–10717CrossRefGoogle Scholar
  26. 26.
    Scherle PA, Jones EA, Favata MF, Daulerio AJ, Covington MB, Nurnberg SA, Magolda RL, Trzaskos JM (1998) Inhibition of MAP kinase kinase prevents cytokine and prostaglandin E2 production in lipopolysaccharide-stimulated monocytes. J Immunol 161:5681–5686Google Scholar
  27. 27.
    Vejux A, Malvitte L, Lizard G (2008) Side effects of oxysterols: cytotoxicity, oxidation, inflammation, and phospholipidosis. Braz J Med Biol Res 41:545–556CrossRefGoogle Scholar
  28. 28.
    Shaul YD, Seger R (2007) The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta 1773:1213–1226CrossRefGoogle Scholar
  29. 29.
    Brown AJ, Jessup W (2009) Oxysterols sources, cellular storage and metabolism, and new insights into their roles in cholesterol homeostasis. Mol Aspects Med 30:111–122CrossRefGoogle Scholar
  30. 30.
    Dunn KC, Aotaki-Keen AE, Putkey FR, Hjelmeland LM (1996) ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Exp Eye Res 62:155–169CrossRefGoogle Scholar
  31. 31.
    Sheu SJ, Bee YS, Chen CH (2008) Resveratrol and large-conductance calcium-activated potassium channels in the protection of human retinal pigment epithelial cells. J Ocul Pharmacol Ther 24:551–555CrossRefGoogle Scholar
  32. 32.
    Luna C, Li G, Liton PB, Qiu J, Epstein DL, Challa P, Gonzalez P (2009) Resveratrol prevents the expression of glaucoma markers induced by chronic oxidative stress in trabecular meshwork cells. Food Chem Toxicol 47:198–204CrossRefGoogle Scholar
  33. 33.
    Tang Z, Liu XY, Zou P (2007) Resveratrol inhibits the secretion of vascular endothelial growth factor and subsequent proliferation in human leukemia U937 cells. J Huazhong Univ Sci Technolog Med Sci 27:508–512CrossRefGoogle Scholar
  34. 34.
    Kimura Y, Sumiyoshi M, Baba K (2008) Antitumor activities of synthetic and natural stilbenes through antiangiogenic action. Cancer Sci 99:2083–2096CrossRefGoogle Scholar
  35. 35.
    Lizard G, Monier S, Cordelet C, Gesquière L, Deckert V, Gueldry S, Lagrost L, Gambert P (1999) Characterization and comparison of the mode of cell death, apoptosis versus necrosis, induced by 7beta-hydroxycholesterol and 7-ketocholesterol in the cells of the vascular wall. Arterioscler Thromb Vasc Biol 19:1190–1200Google Scholar
  36. 36.
    Okawara M, Katsuki H, Kurimoto E, Shibata H, Kume T, Akaike A (2007) Resveratrol protects dopaminergic neurons in midbrain slice culture from multiple insults. Biochem Pharmacol 73:550–560CrossRefGoogle Scholar
  37. 37.
    King RE, Kent KD, Bomser JA (2005) Resveratrol reduces oxidation and proliferation of human retinal pigment epithelial cells via extracellular signal-regulated kinase inhibition. Chem Biol Interact 151:143–149CrossRefGoogle Scholar
  38. 38.
    Vejux A, Kahn E, Ménétrier F, Montange T, Lherminier J, Riedinger JM, Lizard G (2007) Cytotoxic oxysterols induce caspase-independent myelin figure formation and caspase-dependent polar lipid accumulation. Histochem Cell Biol 127:609–624CrossRefGoogle Scholar
  39. 39.
    Anderson N, Borlak J (2006) Drug-induced phospholipidosis. FEBS Lett 580:5533–5540CrossRefGoogle Scholar
  40. 40.
    Schmitz G, Grandl M (2009) Endolysosomal phospholipidosis and cytosolic lipid droplet storage and release in macrophages. Biochim Biophys Acta 1791:524–539Google Scholar
  41. 41.
    Lizard G, Miguet C, Bessede G, Monier S, Gueldry S, Neel D, Gambert P (2000) Impairment with various antioxidants of the loss of mitochondrial transmembrane potential and of the cytosolic release of cytochrome c occurring during 7-ketocholesterol-induced apoptosis. Free Radic Biol Med 28:743–753CrossRefGoogle Scholar
  42. 42.
    O’Callaghan JC, Woods JA, O’Brien NM (2001) Comparative study of the cytotoxic and apoptosis-inducing potential of commonly occurring oxysterols. Cell Biol Toxicol 17:127–137CrossRefGoogle Scholar
  43. 43.
    Lemaire-Ewing S, Berthier A, Royer MC, Logette E, Corcos L, Bouchot A, Monier S, Prunet C, Raveneau M, Rébé C, Desrumaux C, Lizard G, Néel D (2009) 7beta-Hydroxycholesterol and 25-hydroxycholesterol-induced interleukin-8 secretion involves a calcium-dependent activation of c-fos via the ERK1/2 signalling pathway in THP-1 cells: oxysterols-induced IL-8 secretion is calcium-dependent. Cell Biol Toxicol 25:127–139CrossRefGoogle Scholar
  44. 44.
    Kanda A, Abecasis G, Swaroop A (2008) Inflammation in the pathogenesis of age-related macular degeneration. Br J Ophthalmol 92:448–450CrossRefGoogle Scholar
  45. 45.
    Higgins GT, Wang JH, Dockery P, Cleary PE, Redmond HP (2003) Induction of angiogenic cytokine expression in cultured RPE by ingestion of oxidized photoreceptor outer segments. Invest Ophthalmol Vis Sci 44:1775–1782CrossRefGoogle Scholar
  46. 46.
    Sung SC, Kim K, Lee KA, Choi KH, Kim SM, Son YH, Moon YS, Eo SK, Rhim BY (2009) 7-Ketocholesterol upregulates interleukin-6 via mechanisms that are distinct from those of tumor necrosis factor-alpha, in vascular smooth muscle cells. J Vasc Res 46:36–44CrossRefGoogle Scholar
  47. 47.
    Yoshida A, Yoshida S, Khalil AK, Ishibashi T, Inomata H (1998) Role of NF-kappaB-mediated interleukin-8 expression in intraocular neovascularization. Invest Ophthalmol Vis Sci 39:1097–1106Google Scholar
  48. 48.
    Goldberg DM, Yan J, Soleas GJ (2003) Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clin Biochem 36:79–87CrossRefGoogle Scholar
  49. 49.
    Ziegler CC, Rainwater L, Whelan J, McEntee MF (2004) Dietary resveratrol does not affect intestinal tumorigenesis in ApcMin/+ mice. J Nutr 134:5–10Google Scholar
  50. 50.
    Marel AK, Lizard G, Izard JC, Latruffe N, Delmas D (2008) Inhibitory effects of trans-resveratrol analogs molecules on the proliferation and the cell cycle progression of human colon tumoral cells. Mol Nutr Food Res 52:538–548CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • B. Dugas
    • 7
    • 2
  • S. Charbonnier
    • 7
  • M. Baarine
    • 1
  • K. Ragot
    • 7
  • D. Delmas
    • 7
  • F. Ménétrier
    • 3
  • J. Lherminier
    • 4
  • L. Malvitte
    • 7
    • 2
  • T. Khalfaoui
    • 7
  • A. Bron
    • 2
    • 5
  • C. Creuzot-Garcher
    • 2
    • 5
  • N. Latruffe
    • 7
  • Gérard Lizard
    • 7
    • 6
  1. 1.Centre de Recherche INSERM 866 (Lipides, Nutrition, Cancer)–Equipe Biochimie Métabolique et NutritionnelleUniversité de BourgogneDijonFrance
  2. 2.Service d’Ophtalmologie, CHU/Hôpital GénéralDijonFrance
  3. 3.INRA U 1129, UMR FLAVICDijonFrance
  4. 4.Service Commun de Microscopie Electronique, INRADijon, CedexFrance
  5. 5.Groupe de Recherche Œil et Nutrition, INRADijonFrance
  6. 6.INSERM 866, Faculté des Sciences GabrielDijonFrance
  7. 7.Université de Bourgogne and INSERM 866Faculté des Sciences GabrielDijonFrance

Personalised recommendations