European Journal of Nutrition

, Volume 49, Issue 6, pp 345–355 | Cite as

Bilberry juice modulates plasma concentration of NF-κB related inflammatory markers in subjects at increased risk of CVD

  • Anette Karlsen
  • Ingvild Paur
  • Siv K. Bøhn
  • Amrit K. Sakhi
  • Grethe I. Borge
  • Mauro Serafini
  • Iris Erlund
  • Petter Laake
  • Serena Tonstad
  • Rune Blomhoff
Original Contribution

Abstract

Purpose

Bilberries are abundant in polyphenols. Dietary polyphenols have been associated with strategies for prevention and treatment of chronic inflammatory diseases. We investigated the effect of bilberry juice on serum and plasma biomarkers of inflammation and antioxidant status in subjects with elevated levels of at least one risk factor for cardiovascular disease (CVD).

Methods

In a randomized controlled trial, participants consumed either bilberry juice (n = 31) or water (n = 31) for 4 weeks.

Results

Supplementation with bilberry juice resulted in significant decreases in plasma concentrations of C-reactive protein (CRP), interleukin (IL)-6, IL-15, and monokine induced by INF-γ (MIG). Unexpectedly, an increase in the plasma concentration of tumor nuclear factor-α (TNF-α) was observed in the bilberry group. CRP, IL-6, IL15, MIG, and TNF-α are all target genes of nuclear factor- kappa B (NF-κB), —a transcription factor that is crucial in orchestrating inflammatory responses. Plasma quercetin and p-coumaric acid increased in the bilberry group, otherwise no differences were observed for clinical parameters, oxidative stress or antioxidant status. Furthermore, we studied the effect of polyphenols from bilberries on lipopolysaccharide (LPS)-induced NF-κB activation in a monocytic cell line. We observed that quercetin, epicatechin, and resveratrol inhibited NF-κB activation.

Conclusions

These findings suggest that supplementation with bilberry polyphenols may modulate the inflammation processes. Further testing of bilberry supplementation as a potential strategy in prevention and treatment of chronic inflammatory diseases is warranted.

Keywords

Bilberry NF-κB Cytokines Polyphenols Human intervention Cell culture 

Abbreviations

CVD

Cardiovascular disease

CRP

C-reactive protein

IL

Interleukin

MIG

Monokine induced by INF-γ

RANTES

Regulated upon activation, normal T cell expressed and secreted

TNF-α

Tumor nuclear factor-α

NF-κB

Nuclear factor-kappa B

LPS

Lipopolysaccharide

BP

Blood pressure

LDL

Low-density lipoprotein

HDL

High density lipoprotein

SRM

Standardized reference materials

FRAP

Ferric reducing/antioxidant power

TRAP

Total peroxyl-radical trapping activity

TE

Trolox equivalents

ORAC

Oxygen radical absorbance capacity

PCA

Perchloric acid

AA

Ascorbic acid

DHAA

Dehydroascorbic acid

TAA

Total ascorbic acid

HPLC

High performance liquid chromatography

GSH

Glutathione

D-ROM

Diacrons reactive oxygen metabolites

WBC

White blood cells

γ-GT

γ-glutamyltransferase

Supplementary material

394_2010_92_MOESM1_ESM.doc (70 kb)
Supplementary material 1 (DOC 70 kb)

References

  1. 1.
    Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444:860–867CrossRefGoogle Scholar
  2. 2.
    Vakkila J, Lotze MT (2004) Inflammation and necrosis promote tumour growth. Nat Rev Immunol 4:641–648CrossRefGoogle Scholar
  3. 3.
    Gilmore TD, Herscovitch M (2006) Inhibitors of NF-kappaB signaling: 785 and counting. Oncogene 25:6887–6899CrossRefGoogle Scholar
  4. 4.
    Pahl HL (1999) Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18:6853–6866CrossRefGoogle Scholar
  5. 5.
    Christman JW, Sadikot RT, Blackwell TS (2000) The role of nuclear factor-kappa B in pulmonary diseases. Chest 117:1482–1487CrossRefGoogle Scholar
  6. 6.
    Feldmann M, Andreakos E, Smith C, Bondeson J, Yoshimura S, Kiriakidis S, Monaco C, Gasparini C, Sacre S, Lundberg A, Paleolog E, Horwood NJ, Brennan FM, Foxwell BM (2002) Is NF-kappaB a useful therapeutic target in rheumatoid arthritis? Ann Rheum Dis 61(Suppl 2):ii13–ii18Google Scholar
  7. 7.
    Karin M, Cao Y, Greten FR, Li ZW (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2:301–310CrossRefGoogle Scholar
  8. 8.
    Mattson MP, Camandola S (2001) NF-kappaB in neuronal plasticity and neurodegenerative disorders. J Clin Invest 107:247–254CrossRefGoogle Scholar
  9. 9.
    Neurath MF, Becker C, Barbulescu K (1998) Role of NF-kappaB in immune and inflammatory responses in the gut. Gut 43:856–860CrossRefGoogle Scholar
  10. 10.
    Valen G, Yan ZQ, Hansson GK (2001) Nuclear factor kappa-B and the heart. J Am Coll Cardiol 38:307–314CrossRefGoogle Scholar
  11. 11.
    Koenig W, Sund M, Frohlich M, Fischer HG, Lowel H, Doring A, Hutchinson WL, Pepys MB (1999) C-Reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to 1992. Circulation 99:237–242Google Scholar
  12. 12.
    Ridker PM, Rifai N, Stampfer MJ, Hennekens CH (2000) Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 101:1767–1772Google Scholar
  13. 13.
    Armani A, Becker RC (2005) The biology, utilization, and attenuation of C-reactive protein in cardiovascular disease: part I. Am Heart J 149:971–976CrossRefGoogle Scholar
  14. 14.
    Blondeau N, Widmann C, Lazdunski M, Heurteaux C (2001) Activation of the nuclear factor-kappaB is a key event in brain tolerance. J Neurosci 21:4668–4677Google Scholar
  15. 15.
    Valen G (2004) Signal transduction through nuclear factor kappa B in ischemia-reperfusion and heart failure. Basic Res Cardiol 99:1–7CrossRefGoogle Scholar
  16. 16.
    Zhang J, Ping P, Vondriska TM, Tang XL, Wang GW, Cardwell EM, Bolli R (2003) Cardioprotection involves activation of NF-kappa B via PKC-dependent tyrosine and serine phosphorylation of I kappa B-alpha. Am J Physiol Heart Circ Physiol 285:H1753–H1758Google Scholar
  17. 17.
    Nyman NA, Kumpulainen JT (2001) Determination of anthocyanidins in berries and red wine by high-performance liquid chromatography. J Agric Food Chem 49:4183–4187CrossRefGoogle Scholar
  18. 18.
    Kalt W, McDonald J, Donner H (2000) Anthocyanins, phenolics and antioxidant capacity of processed lowbush blueberry products. J Food Sci 65:390–393CrossRefGoogle Scholar
  19. 19.
    Maatta-Riihinen KR, Kamal-Eldin A, Mattila PH, Gonzalez-Paramas AM, Torronen AR (2004) Distribution and contents of phenolic compounds in eighteen Scandinavian berry species. J Agric Food Chem 52:4477–4486CrossRefGoogle Scholar
  20. 20.
    Ehala S, Vaher M, Kaljurand M (2005) Characterization of phenolic profiles of Northern European berries by capillary electrophoresis and determination of their antioxidant activity. J Agric Food Chem 53:6484–6490CrossRefGoogle Scholar
  21. 21.
    Hakkinen SH, Karenlampi SO, Heinonen IM, Mykkanen HM, Torronen AR (1999) Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J Agric Food Chem 47:2274–2279CrossRefGoogle Scholar
  22. 22.
    Zadernowski R, Naczk M, Nesterowicz J (2005) Phenolic acid profiles in some small berries. J Agric Food Chem 53:2118–2124CrossRefGoogle Scholar
  23. 23.
    Lyons MM, Yu C, Toma RB, Cho SY, Reiboldt W, Lee J, van Breemen RB (2003) Resveratrol in raw and baked blueberries and bilberries. J Agric Food Chem 51:5867–5870CrossRefGoogle Scholar
  24. 24.
    Rimando AM, Kalt W, Magee JB, Dewey J, Ballington JR (2004) Resveratrol, pterostilbene, and piceatannol in vaccinium berries. J Agric Food Chem 52:4713–4719CrossRefGoogle Scholar
  25. 25.
    Maatta-Riihinen KR, Kahkonen MP, Torronen AR, Heinonen IM (2005) Catechins and procyanidins in berries of vaccinium species and their antioxidant activity. J Agric Food Chem 53:8485–8491CrossRefGoogle Scholar
  26. 26.
    Mazur WM, Uehara M, Wahala K, Adlercreutz H (2000) Phyto-oestrogen content of berries, and plasma concentrations and urinary excretion of enterolactone after a single strawberry-meal in human subjects. Br J Nutr 83:381–387Google Scholar
  27. 27.
    Scalbert A, Manach C, Morand C, Remesy C, Jimenez L (2005) Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 45:287–306CrossRefGoogle Scholar
  28. 28.
    Manach C, Mazur A, Scalbert A (2005) Polyphenols and prevention of cardiovascular diseases. Curr Opin Lipidol 16:77–84CrossRefGoogle Scholar
  29. 29.
    Tonstad S, Klemsdal TO, Landaas S, Hoieggen A (2006) No effect of increased water intake on blood viscosity and cardiovascular risk factors. Br J Nutr 96:993–996CrossRefGoogle Scholar
  30. 30.
    Karlsen A, Retterstol L, Laake P, Paur I, Kjolsrud-Bohn S, Sandvik L, Blomhoff R (2007) Anthocyanins Inhibit Nuclear Factor-{kappa}B Activation in Monocytes and Reduce Plasma Concentrations of Pro-Inflammatory Mediators in Healthy Adults. J Nutr 137:1951–1954Google Scholar
  31. 31.
    Benzie IF, Strain JJ (1999) Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Meth Enzymol 299:15–27CrossRefGoogle Scholar
  32. 32.
    Serafini M, Bugianesi R, Salucci M, Azzini E, Raguzzini A, Maiani G (2002) Effect of acute ingestion of fresh and stored lettuce (Lactuca sativa) on plasma total antioxidant capacity and antioxidant levels in human subjects. Br J Nutr 88:615–623CrossRefGoogle Scholar
  33. 33.
    Davalos A, Gomez-Cordoves C, Bartolome B (2004) Extending applicability of the oxygen radical absorbance capacity (ORAC-fluorescein) assay. J Agric Food Chem 52:48–54CrossRefGoogle Scholar
  34. 34.
    Karlsen A, Blomhoff R, Gundersen TE (2005) High-throughput analysis of vitamin C in human plasma with the use of HPLC with monolithic column and UV-detection. J Chromatogr B Analyt Technol Biomed Life Sci 824:132–138CrossRefGoogle Scholar
  35. 35.
    Karlsen A, Blomhoff R, Gundersen TE (2007) Stability of whole blood and plasma ascorbic acid. Eur J Clin Nutr 61:1233–1236CrossRefGoogle Scholar
  36. 36.
    Sakhi AK, Russnes KM, Smeland S, Blomhoff R, Gundersen TE (2006) Simultaneous quantification of reduced and oxidized glutathione in plasma using a two-dimensional chromatographic system with parallel porous graphitized carbon columns coupled with fluorescence and coulometric electrochemical detection. J Chromatogr A 1104:179–189CrossRefGoogle Scholar
  37. 37.
    Bohn SK, Smeland S, Sakhi AK, Thoresen M, Russnes KM, Tausjo J, Svilaas A, Svilaas T, Blomhoff R (2006) Post-radiotherapy plasma total glutathione is associated to outcome in patients with head and neck squamous cell carcinoma. Cancer Lett 238:240–247CrossRefGoogle Scholar
  38. 38.
    Richheimer S, Kent M, Bernart M (1994) Reversed-phase high-performance liquid chromatographic method using a pentafluorophenyl bonded phase for analysis of tocopherols. J Chrom A 677:75–80CrossRefGoogle Scholar
  39. 39.
    Erlund I, Alfthan G, Siren H, Ariniemi K, Aro A (1999) Validated method for the quantitation of quercetin from human plasma using high-performance liquid chromatography with electrochemical detection. J Chromatogr B Biomed Sci Appl 727:179–189CrossRefGoogle Scholar
  40. 40.
    Kilkkinen A, Erlund I, Virtanen MJ, Alfthan G, Ariniemi K, Virtamo J (2006) Serum enterolactone concentration and the risk of coronary heart disease in a case-cohort study of Finnish male smokers. Am J Epidemiol 163:687–693CrossRefGoogle Scholar
  41. 41.
    Carlsen H, Moskaug JO, Fromm SH, Blomhoff R (2002) In vivo imaging of NF-kappa B activity. J Immunol 168:1441–1446Google Scholar
  42. 42.
    Bakhtiarova A, Taslimi P, Elliman SJ, Kosinski PA, Hubbard B, Kavana M, Kemp DM (2006) Resveratrol inhibits firefly luciferase. Biochem Biophys Res Commun 351:481–484CrossRefGoogle Scholar
  43. 43.
    Azimi N, Brown K, Bamford RN, Tagaya Y, Siebenlist U, Waldmann TA (1998) Human T cell lymphotropic virus type I Tax protein trans-activates interleukin 15 gene transcription through an NF-kappaB site. Proc Natl Acad Sci USA 95:2452–2457CrossRefGoogle Scholar
  44. 44.
    Libermann TA, Baltimore D (1990) Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol 10:2327–2334Google Scholar
  45. 45.
    Shakhov AN, Collart MA, Vassalli P, Nedospasov SA, Jongeneel CV (1990) Kappa B-type enhancers are involved in lipopolysaccharide-mediated transcriptional activation of the tumor necrosis factor alpha gene in primary macrophages. J Exp Med 171:35–47CrossRefGoogle Scholar
  46. 46.
    Bunting K, Rao S, Hardy K, Woltring D, Denyer GS, Wang J, Gerondakis S, Shannon MF (2007) Genome-wide analysis of gene expression in T cells to identify targets of the NF-kappa B transcription factor c-Rel. J Immunol 178:7097–7109Google Scholar
  47. 47.
    Moriuchi H, Moriuchi M, Fauci AS (1997) Nuclear factor-kappa B potently up-regulates the promoter activity of RANTES, a chemokine that blocks HIV infection. J Immunol 158:3483–3491Google Scholar
  48. 48.
    Kumar A, Takada Y, Boriek AM, Aggarwal BB (2004) Nuclear factor-kappaB: its role in health and disease. J Mol Med 82:434–448CrossRefGoogle Scholar
  49. 49.
    Kelley DS, Rasooly R, Jacob RA, Kader AA, Mackey BE (2006) Consumption of Bing sweet cherries lowers circulating concentrations of inflammation markers in healthy men and women. J Nutr 136:981–986Google Scholar
  50. 50.
    Ridker PM (2005) C-reactive protein, inflammation, and cardiovascular disease: clinical update. Tex Heart Inst J 32:384–386Google Scholar
  51. 51.
    Waehre T, Halvorsen B, Damas JK, Yndestad A, Brosstad F, Gullestad L, Kjekshus J, Froland SS, Aukrust P (2002) Inflammatory imbalance between IL-10 and TNFalpha in unstable angina potential plaque stabilizing effects of IL-10. Eur J Clin Invest 32:803–810CrossRefGoogle Scholar
  52. 52.
    Terkeltaub RA (1999) IL-10: An “immunologic scalpel” for atherosclerosis? Arterioscler Thromb Vasc Biol 19:2823–2825Google Scholar
  53. 53.
    Mallat Z, Besnard S, Duriez M, Deleuze V, Emmanuel F, Bureau MF, Soubrier F, Esposito B, Duez H, Fievet C, Staels B, Duverger N, Scherman D, Tedgui A (1999) Protective role of interleukin-10 in atherosclerosis. Circ Res 85:e17–e24Google Scholar
  54. 54.
    Manach C, Williamson G, Morand C, Scalbert A, Remesy C (2005) Bioavailability and bioefficacy of polyphenols in humans. I: review of 97 bioavailability studies. Am J Clin Nutr 81:230S–242SGoogle Scholar
  55. 55.
    Paur I, Austenaa LM, Blomhoff R (2008) Extracts of dietary plants are efficient modulators of nuclear factor kappa B. Food Chem Toxicol 46:1288–1297CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Anette Karlsen
    • 1
  • Ingvild Paur
    • 1
  • Siv K. Bøhn
    • 1
  • Amrit K. Sakhi
    • 1
  • Grethe I. Borge
    • 2
  • Mauro Serafini
    • 3
  • Iris Erlund
    • 4
  • Petter Laake
    • 5
  • Serena Tonstad
    • 6
  • Rune Blomhoff
    • 1
  1. 1.Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
  2. 2.Nofima Mat ASÅsNorway
  3. 3.Antioxidant Research Laboratory, Unit of Human NutritionINRANRomeItaly
  4. 4.Department of Chronic Disease PreventionNational Institute for Health and WelfareHelsinkiFinland
  5. 5.Department of Biostatistics, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
  6. 6.Department of Preventive CardiologyUllevaal University HospitalOsloNorway

Personalised recommendations