Advertisement

European Journal of Nutrition

, Volume 49, Issue 5, pp 285–292 | Cite as

Antioxidant status of elite athletes remains impaired 2 weeks after a simulated altitude training camp

  • Vincent Pialoux
  • Julien V. Brugniaux
  • Edmond Rock
  • Andrzej Mazur
  • Laurent Schmitt
  • Jean-Paul Richalet
  • Paul Robach
  • Eric Clottes
  • Jean Coudert
  • Nicole Fellmann
  • Rémi Mounier
Original Contribution

Abstract

Background

It has been shown that the antioxidant status was altered by the “live high-train low” (LHTL) method, however, no information is available regarding the antioxidant restoration during the recovery period.

Aim of the study

We tested the hypothesis that the antioxidant status is impaired by 18 days LHTL in elite athletes and remained altered after 14 days of recovery.

Methods

Eleven elite cross-country skiers from the French Skiing Federation were submitted to 18-day endurance training. Six (hypoxic group; HG) trained at 1,200 m and lived in hypoxia (simulated altitude of 2,500 m–3,000 m–3,500 m) and 5 (control group; CG) trained and lived at 1,200 m. Plasma levels of advanced oxidation protein products (AOPP), malondialdehydes (MDA), ferric reducing antioxidant power (FRAP), trolox equivalent antioxidant capacity (TEAC) lipid-soluble antioxidants (α-tocopherol, β-carotene and lycopene) were measured at rest, before (PRE), the first day after (POST1) and again 2 weeks (POST14) after the training. Intakes of vitamins A and E were evaluated from the dietary recording.

Results

In POST1, FRAP and TEAC decreased in both groups, however, the TEAC decrease persisted in POST14 for HG only. Lycopene and β-carotene decreased in POST1 for HG and remained lower in POST14. Finally, AOPP increased only for HG in POST1. The general decline of antioxidant status for both groups might result from insufficient intakes in vitamins A and E.

Conclusion

This is the first study to show that the antioxidant status did not return to baseline 2 weeks after 18 days of LHTL training.

Keywords

Intermittent hypoxia Endurance training Oxidative stress Antioxidant α-Tocopherol 

Notes

Acknowledgments

The authors gratefully thank the subjects for their contribution. This study was funded by the “International Olympic Committee”, the French “Ministère des sports” and the “Direction Régionale de la Jeunesse et des Sports de la Région Auvergne”.

Conflict of interest statement

The authors declare no competing financial interests.

References

  1. 1.
    ASFFA (2003) Compléments et suppléments pour le sportif. In: Apports nutritionnels conseillés pour la population française (3e édition). Tec et Doc (eds), Paris, pp 380–382Google Scholar
  2. 2.
    Bailey DM, Davies B, Young IS (2001) Intermittent hypoxic training: implications for lipid peroxidation induced by acute normoxic exercise in active men. Clin Sci (Lond) 101:465–475CrossRefGoogle Scholar
  3. 3.
    Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76CrossRefGoogle Scholar
  4. 4.
    Brugniaux JV, Schmitt L, Robach P, Jeanvoine H, Zimmermann H, Nicolet G, Duvallet A, Fouillot JP, Richalet JP (2006) Living high-training low: tolerance and acclimatization in elite endurance athletes. Eur J Appl Physiol 96:66–77CrossRefGoogle Scholar
  5. 5.
    Brugniaux JV, Schmitt L, Robach P, Nicolet G, Fouillot JP, Moutereau S, Lasne F, Pialoux V, Saas P, Chorvot MC, Cornolo J, Olsen NV, Richalet JP (2006) Eighteen days of “living high, training low” stimulate erythropoiesis and enhance aerobic performance in elite middle-distance runners. J Appl Physiol 100:203–211CrossRefGoogle Scholar
  6. 6.
    Burke LM, Slater G, Broad EM, Haukka J, Modulon S, Hopkins WG (2003) Eating patterns and meal frequency of elite Australian athletes. Int J Sport Nutr Exerc Metab 13:521–538Google Scholar
  7. 7.
    Cao G, Prior RL (1998) Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clin Chem 44:1309–1315Google Scholar
  8. 8.
    Clarkson PM (1995) Antioxidants and physical performance. Crit Rev Food Sci Nutr 35:131–141CrossRefGoogle Scholar
  9. 9.
    Dragsted LO, Pedersen A, Hermetter A, Basu S, Hansen M, Haren GR, Kall M, Breinholt V, Castenmiller JJ, Stagsted J, Jakobsen J, Skibsted L, Rasmussen SE, Loft S, Sandstrom B (2004) The 6-a-day study: effects of fruit and vegetables on markers of oxidative stress and antioxidative defense in healthy nonsmokers. Am J Clin Nutr 79:1060–1072Google Scholar
  10. 10.
    Gore CJ, Hahn A, Rice A, Bourdon P, Lawrence S, Walsh C, Stanef T, Barnes P, Parisotto R, Martin D, Pyne D (1998) Altitude training at 2690 m does not increase total haemoglobin mass or sea level VO2max in world champion track cyclists. J Sci Med Sport 1:156–170CrossRefGoogle Scholar
  11. 11.
    Joanny P, Steinberg J, Robach P, Richalet JP, Gortan C, Gardette B, Jammes Y (2001) Operation Everest III (Comex’97): the effect of simulated sever hypobaric hypoxia on lipid peroxidation and antioxidant defence systems in human blood at rest and after maximal exercise. Resuscitation 49:307–314CrossRefGoogle Scholar
  12. 12.
    Jordan W, Cohrs S, Degner D, Meier A, Rodenbeck A, Mayer G, Pilz J, Ruther E, Kornhuber J, Bleich S (2006) Evaluation of oxidative stress measurements in obstructive sleep apnea syndrome. J Neural Transm 113:239–254CrossRefGoogle Scholar
  13. 13.
    Koechlin C, Couillard A, Simar D, Cristol JP, Bellet H, Hayot M, Prefaut C (2004) Does oxidative stress alter quadriceps endurance in chronic obstructive pulmonary disease? Am J Respir Crit Care Med 169:1022–1027CrossRefGoogle Scholar
  14. 14.
    Le Moulenc N, Deheeger M, Preziosi P, Monterio P, Valeix P, Rolland-Cachera MF, Potier de Gourcy G, Christides JP, Galan P, Hercberg S (1996) Validation du manuel photo utilisé dans l’enquête alimentaire SU.VI.MAX. Cah Nutr Diet 3:58–16Google Scholar
  15. 15.
    Lefevre G, Beljean-Leymarie M, Beyerle F, Bonnefont-Rousselot D, Cristol JP, Therond P, Torreilles J (1998) Evaluation of lipid peroxidation by measuring thiobarbituric acid reactive substances. Ann Biol Clin (Paris) 56:305–319Google Scholar
  16. 16.
    Levine BD (2002) Intermittent hypoxic training: fact and fancy. High Alt Med Biol 3:177–193CrossRefGoogle Scholar
  17. 17.
    Levine BD, Stray-Gundersen J (1997) “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol 83:102–112Google Scholar
  18. 18.
    Lyan B, Zais-Braesco V, Cardinault N, Tyssandier V, Borel P, Exandre-Gouabau MC, Grolier P (2001) Simple method for clinical determination of 13 carotenoids in human plasma using an isocratic high-performance liquid chromatographic method. J Chromatogr B Biomed Sci Appl 751:297–303CrossRefGoogle Scholar
  19. 19.
    Moore K, Roberts LJ (1998) Measurement of lipid peroxidation. Free Radic Res 28:659–671CrossRefGoogle Scholar
  20. 20.
    Palazzetti S, Rousseau AS, Richard MJ, Favier A, Margaritis I (2004) Antioxidant supplementation preserves antioxidant response in physical training and low antioxidant intake. Br J Nutr 91:91–100CrossRefGoogle Scholar
  21. 21.
    Pialoux V, Mounier R, Brown AD, Steinback CD, Rawling JM, Poulin MJ (2009) Relationship between oxidative stress and HIF-1 alpha mRNA during sustained hypoxia in humans. Free Radic Biol Med 46:321–326CrossRefGoogle Scholar
  22. 22.
    Pialoux V, Mounier R, Brugniaux JV, Rock E, Mazur A, Richalet JP, Robach P, Coudert J, Fellmann N (2009) Thirteen days of “live high-train low” does not affect prooxidant/antioxidant balance in elite swimmers. Eur J Appl Physiol 106(4):517–524Google Scholar
  23. 23.
    Pialoux V, Mounier R, Ponsot E, Rock E, Mazur A, Dufour S, Richard R, Richalet JP, Coudert J, Fellmann N (2006) Effects of exercise and training in hypoxia on antioxidant/pro-oxidant balance. Eur J Clin Nutr 60:1345–1354CrossRefGoogle Scholar
  24. 24.
    Pialoux V, Mounier R, Rock E, Mazur A, Schmitt L, Richalet JP, Robach P, Brugniaux J, Coudert J, Fellmann N (2009) Effects of the ‘live high-train low’ method on prooxidant/antioxidant balance on elite athletes. Eur J Clin Nutr 63(6):756–762Google Scholar
  25. 25.
    Pialoux V, Mounier R, Rock E, Mazur A, Schmitt L, Richalet JP, Robach P, Coudert J, Fellmann N (2009) Effects of acute hypoxic exposure on prooxidant/antioxidant balance in elite endurance athletes. Int J Sports Med 30:87–93CrossRefGoogle Scholar
  26. 26.
    Robach P, Schmitt L, Brugniaux JV, Nicolet G, Duvallet A, Fouillot JP, Moutereau S, Lasne F, Pialoux V, Olsen NV, Richalet JP (2006) Living high-training low: effect on erythropoiesis and maximal aerobic performance in elite Nordic skiers. Eur J Appl Physiol 97:695–705CrossRefGoogle Scholar
  27. 27.
    Rousseau AS, Hininger I, Palazzetti S, Faure H, Roussel AM, Margaritis I (2004) Antioxidant vitamin status in high exposure to oxidative stress in competitive athletes. Br J Nutr 92:461–468CrossRefGoogle Scholar
  28. 28.
    Sen CK (2001) Antioxidants in exercise nutrition. Sports Med 31:891–908CrossRefGoogle Scholar
  29. 29.
    Vasankari TJ, Kujala UM, Rusko H, Sarna S, Ahotupa M (1997) The effect of endurance exercise at moderate altitude on serum lipid peroxidation and antioxidative functions in humans. Eur J Appl Physiol Occup Physiol 75:396–399CrossRefGoogle Scholar
  30. 30.
    Vollaard NB, Shearman JP, Cooper CE (2005) Exercise-induced oxidative stress:myths, realities and physiological relevance. Sports Med 35:1045–1062CrossRefGoogle Scholar
  31. 31.
    Wing SL, Askew EW, Luetkemeier MJ, Ryujin DT, Kamimori GH, Grissom CK (2003) Lack of effect of Rhodiola or oxygenated water supplementation on hypoxemia and oxidative stress. Wilderness Environ Med 14:9–16Google Scholar
  32. 32.
    Witko-Sarsat V, Friedlander M, Capeillere-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J, Jungers P, Scamps-Latscha B (1996) Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 49:1304–1313CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Vincent Pialoux
    • 1
    • 2
  • Julien V. Brugniaux
    • 3
    • 4
  • Edmond Rock
    • 5
  • Andrzej Mazur
    • 5
  • Laurent Schmitt
    • 6
  • Jean-Paul Richalet
    • 4
  • Paul Robach
    • 4
    • 7
  • Eric Clottes
    • 8
  • Jean Coudert
    • 2
  • Nicole Fellmann
    • 2
  • Rémi Mounier
    • 9
    • 2
  1. 1.Centre de Recherche et d’Innovation sur le SportUniversité Claude Bernard Lyon 1Villeurbanne CedexFrance
  2. 2.Service de Médecine du Sport et des Explorations Fonctionnelles, Centre Hospitalier Universitaire de Clermont-Ferrand, Hôpital G. MontpiedUniversité d’AuvergneClermont-FerrandFrance
  3. 3.Neurovascular Research Laboratory, Faculty of Health, Science and SportUniversity of GlamorganSouth WalesUK
  4. 4.Laboratoire « Réponses cellulaires et fonctionnelles à l’hypoxie », EA 2363, A.R.P.EUniversité Paris 13Bobigny CedexFrance
  5. 5.Unité de Nutrition Humaine UMR 1019, Equipe Stress Métabolique et MicronutrimentsINRASaint Genès ChampanelleFrance
  6. 6.Centre National de Ski NordiquePrémanonFrance
  7. 7.Ecole Nationale de Ski et d’AlpinismeChamonixFrance
  8. 8.Institut de Pharmacologie et de Biologie StructuraleToulouseFrance
  9. 9.Institut CochinUniversité Paris Descartes, CNRS (UMR 8104), Inserm U567ParisFrance

Personalised recommendations