Advertisement

European Journal of Nutrition

, Volume 48, Issue 6, pp 355–363 | Cite as

Probiotic properties of Lactobacillus rhamnosus and Lactobacillus paracasei isolated from human faeces

  • Maria Cristina Verdenelli
  • Francesca Ghelfi
  • Stefania Silvi
  • Carla Orpianesi
  • Cinzia Cecchini
  • Alberto CresciEmail author
Original Contribution

Abstract

Background

The possibility of using microbes to maintain health, and to prevent or treat disease is a topic as old as microbiology. The research of novel probiotic strains is important in order to satisfy the increasing request of the market and to obtain functional products in which the probiotic cultures are more active and with better probiotic characteristics than those already present on the market.

Aim of the study

In this study, the probiotic potential of Lactobacillus strains isolated from Italian elderly human faeces was investigated.

Methods

The Lactobacillus strains were identified and examined for resistance to gastric acidity and bile toxicity, adhesion to HT-29 cells, antimicrobial activities, antibiotic susceptibility and plasmid profile. Survival of the strains through human intestine was examined in a 3 months human feeding trial.

Results

Two strains, Lactobacillus rhamnosus IMC 501 and Lactobacillus paracasei IMC 502, tolerated well low pH and bile acids. In antimicrobial activity assays, both strains showed inhibitory properties towards selected potential harmful microorganisms, particularly against Candida albicans. The two selected strains expressed high in vitro adherence to HT-29 cells increasing this characteristic when they are used in combination and they were resistant to vamcomycin, colistin sulphate, gentamicin, oxolinic acid and kanamycin. Moreover, the two strains could be recovered from stools of volunteers after the feeding trials.

Conclusions

Lactobacillus rhamnosus IMC 501 and L. paracasei IMC 502 present favourable strain-specific properties for their utilisation as probiotics in functional foods and the high adhesion ability of the L. rhamnosus IMC 501 and L. paracasei IMC 502 used in combination, confirmed by both in vitro and in vivo study, indicate that the two bacterial strains could be used as health-promoting bacteria.

Keywords

Lactobacillus rhamnosus Lactobacillus paracasei Probiotics Adhesion Probiotic combination Human study 

References

  1. 1.
    Adlerberth I, Ahrne S, Johansson ML, Molin G, Hanson LA, Wold AE (1996) A mannose specific adherence mechanism in Lactobacillus plantarum conferring binding to the human colonic cell line HT-29. Appl Environ Microbiol 62:2244–2251Google Scholar
  2. 2.
    Ahn C, Thompson DC, Duncan C, Stiles ME (1992) Mobilization and location of the genetic determinant of chloramphenicol resistance from Lactobacillus plantarum ca TC2R. Plasmid 27:263–264CrossRefGoogle Scholar
  3. 3.
    Alander M, Satokari R, Korpela R, Saxelin M, Vilpponen-Salmela T, Mattila-Sandholm T, von Wright A (1999) Persistence of colonization of human colonic mucosa by a probiotic strain, Lactobacillus rhamnosus GG, after oral consumption. Appl Environ Microbiol 65:351–354Google Scholar
  4. 4.
    Altschul SF, Boguski MS, Gish W, Wootton JC (1994) Issues in searching molecular sequence databases. Nat Genet 6(2):119–129CrossRefGoogle Scholar
  5. 5.
    Anderson DG, McKay LL (1983) Simple and rapid method for isolating large plasmid DNA from lactic streptococci. Appl Environ Microbiol 46:549–552Google Scholar
  6. 6.
    Annuk H, Shchepetova J, Kullisaar T, Songisepp E, Zilmer M, Mikelsaar M (2003) Characterization of intestinal lactobacilli as putative probiotic candidates. J Appl Microbiol 94:403–412CrossRefGoogle Scholar
  7. 7.
    Azuma Y, Sato M (2001) Lactobacillus casei increases the adhesion of Lactobacillus gasseri NY0509 to human intestinal Caco-2 cells. Biosci Biotechnol Biochem 65:2326–2329CrossRefGoogle Scholar
  8. 8.
    Bauer AW, Kirby WMM, Sherris JC, Turk M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496Google Scholar
  9. 9.
    Bernet-Carnard MF, Lievin V, Brassart D, Neeser JR, Servin AL, Hudault S (1997) The human L. acidophilus strain LA1 secretes a non bacteriocin anti-bacterial substance(s) active in vitro and in vivo. Appl Environ Microbiol 63:2747–2753Google Scholar
  10. 10.
    Bertazzoni Minelli E, Benini A, Marzotto M, Sbarbati A, Ruzzenente O, Ferrario R, Hendrinks H, Dellaglio F (2004) Assessment of novel probiotic Lactobacillus casei strains for the production of functional dairy foods. Int Dairy J 14:723–736CrossRefGoogle Scholar
  11. 11.
    Blum S, Reniero R (2000) Adhesion of selected Lactobacillus strains to enterocyte-like Caco-2 cells in vitro: a critical evaluation of reliability of in vitro adhesion assays. In: 4th work-shop, demonstration of nutritional functionality of probiotic foods. Rovaniemi, 25–28 FebruaryGoogle Scholar
  12. 12.
    Chan RC, Reid G, Irvin RT, Bruce AW, Costerton JR (1985) Competitive exclusion of uropathogens from human uroepithelial cells by Lactobacillus whole cells and cell wall fragments. Infect Immun 47:84–89Google Scholar
  13. 13.
    Coconnier MH, Bernet MF, Kernéis S, Chauvière G, Fourniat J, Servin AL (1993) Inhibition of adhesion of enteroinvasive pathogens to human intestinal Caco-2 cells by Lactobacillus acidophilus strain LB decreases bacterial invasion. FEMS Microbiol Lett 110:299–305CrossRefGoogle Scholar
  14. 14.
    Collado MC, Meriluoto J, Salminen S (2007) Development of new probiotics by strain combinations: is it possible to improve the adhesion to intestinal mucus? J Dairy Sci 90:2710–2716CrossRefGoogle Scholar
  15. 15.
    Cummings JH, Antoine J-M, Azpiroz F, Bourdet-Sicard R, Brandtzaeg P, Calder PC, Gibson GR, Guarner F, Isolauri E, Pannemans D, Shortt C, Tuijtelaars S, Watzl B (2004) Passclaim—gut health and immunity. Eur J Nutr [Suppl 2] 43:II/118-II/173Google Scholar
  16. 16.
    Fang W, Shi M, Huang L, Wang Y (1996) Antagonism of lactic acid bacteria towards Staphylococcus aureus and Escherichia coli on agar plates and in milk. Vet Res 27:3–12Google Scholar
  17. 17.
    FAO/WHO (2001) Evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Report of a joint FAO/WHO expert consultation, CordobaGoogle Scholar
  18. 18.
    Fernández MF, Boris S, Barbés C (2003) Probiotic properties of human Lactobacillus strains to be used in the gastrointestinal tract. J Appl Microbiol 94:449–455CrossRefGoogle Scholar
  19. 19.
    Fons M, Hege T, Ladire M, Raibaud P, Ducluzeau R, Maguin E (1997) Isolation and characterization of a plasmid from Lactobacillus fermentum conferring erythromycin resistance. Plasmid 37:199–203CrossRefGoogle Scholar
  20. 20.
    Frere J (1994) Simple method for extracting plasmid DNA from lactic acid bacteria. Lett Appl Microbiol 18:227–229CrossRefGoogle Scholar
  21. 21.
    Grifoni A, Bazzicalupo M, Di Serio C, Fancelli S, Fani R (1995) Identification of Azospirillum strains by restriction fragment length polymorphism of the 16S rDNA and of the histidine operon. FEMS Microbiol Lett 127(1–2):85–91CrossRefGoogle Scholar
  22. 22.
    Hudault S, Lievin V, Bernet-Camard MF, Servin A (1997) Antagonistic activity exerted in vitro and in vivo by Lactobacillus casei (strain GG) against Salmonella typhimurium C5 infection. Appl Environ Microbiol 63:13–518Google Scholar
  23. 23.
    Isolauri E, Salminen S, Ouwehand AC (2004) Probiotics. Best Pract Res Clin Gastroenterol 18(2):299–314CrossRefGoogle Scholar
  24. 24.
    Jacobsen CN, Rosenfeldt Nielsen V, Hayford AE, Møller PL, Michaelsen KF, Pærregaard A, Sandstrom B, Tvede M, Jakobsen M (1999) Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl Environ Microbiol 65:4949–4956Google Scholar
  25. 25.
    Kimura K, McCartney AL, McConnell MA, Tannock GW (1997) Analysis of fecal populations of bifidobacteria and lactobacilli and investigation of the immunological responses of their human hosts to the predominant strains. Appl Environ Microbiol 63(9):3394–3398Google Scholar
  26. 26.
    Klein G, Pack A, Bonaparte C, Reuter G (1998) Taxonomy and physiology of probiotic lactic acid bacteria. Int J Food Microbiol 41:103–105CrossRefGoogle Scholar
  27. 27.
    Klein G, Hallmann C, Casas IA, Abad J, Louwers J, Reuter G (2000) Exclusion of vanA, vanB and vanC type glycopeptide resistance in strains of Lactobacillus reuteri and Lactobacillus rhamnosus used as probiotics by polymerase chain reaction and hybridization methods. J Appl Microbiol 89:815–824CrossRefGoogle Scholar
  28. 28.
    Ljung A, Wadström T (2006) Lactic acid bacteria as probiotic. Curr Issues Intest Microbiol 7:73–90Google Scholar
  29. 29.
    McCartney AL, Wenzhi W, Tannock GW (1996) Molecular analysis of the composition of the bifidobacterial and lactobacillus microflora of humans. Appl Environ Microbiol 62(12):4608–4613Google Scholar
  30. 30.
    Mueller S, Saunier K, Hanisch C, Norin E, Alm L, Midtvedt T, Cresci A, Silvi S, Orpianesi C, Verdenelli MC, Clavel T, Koebnick C, Zunft HJ, Doré J, Blaut M (2006) Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol 72(2):1027–1033CrossRefGoogle Scholar
  31. 31.
    NCCLS Standard (1997) Methods for antimicrobial susceptibility testing for anaerobic bacteria. Approved Standard-Fourth edition document, vol. 11, no. 17Google Scholar
  32. 32.
    Ouwehand AC, Isolauri E, Kirjavainen PV, Tölkkö S, Salminen SJ (2000) The mucus binding of Bifidobacterium lactis Bb12 is enhanced in the presence of Lactobacillus GG and Lact. delbrueckii subsp. bulgaricus. Lett Appl Microbiol 30:10–13CrossRefGoogle Scholar
  33. 33.
    Reid G, Bruce AW, McGroarty JA, Cheng KJ, Costerton JW (1990) Is there a role of lactobacilli in prevention of urogenital and intestinal infection? Clin Microbiol Rev 3:335–344Google Scholar
  34. 34.
    Rolfe RD (2000) The role of probiotic cultures in the control of gastrointestinal health. J Nutr 130:396S–402SGoogle Scholar
  35. 35.
    Rönkä E, Malinen E, Saarela M, Rinta-Koski M, Aarnikunnas J, Palva A (2003) Probiotic and milk technological properties of Lactobacillus brevis. Int J Food Microbiol 82:63–74CrossRefGoogle Scholar
  36. 36.
    Salminen S, von Wright A, Morelli L, Marteau P, Brassart D, Vos de WM, Fonde’n R, Saxelin M, Collins K, Mogensen G, Birkeland SE, Sandholm TM (1998) Demonstration of safety of probiotics—a review. Int J Food Microbiol 44:93–106CrossRefGoogle Scholar
  37. 37.
    Schiffrin EJ, Rochat F, Link-Amster H, Aeschlimann JM, Donnet-Hughes A (1995) Immunomodulation of human blood cells following the ingestion of lactic acid bacteria. J Dairy Sci 78:491–497CrossRefGoogle Scholar
  38. 38.
    Silvi S, Verdenelli MC, Orpianesi C, Cresci A (2003) EU project Crownalife: functional foods, gut microflora and healthy ageing. Isolation and identification of Lactobacillus and Bifidobacterium strains from faecal samples of elderly subjects for a possible probiotic use in functional foods. J Food Engin 56:195–200CrossRefGoogle Scholar
  39. 39.
    Tannock GW, Luchansky JB, Miller L, Connell H, Thode-Andersen S, Mercer AA, Klaenhammer TR (1994) Molecular characterization of a plasmid-borne (pGT633) erythromycin resistance determinant (ermGT) from Lactobacillus reuteri 100–63. Plasmid 31:60–71CrossRefGoogle Scholar
  40. 40.
    Tuomola (née Lehto) E, Salminen SJ (1998) Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures. Int J Food Microbiol 41:45–51CrossRefGoogle Scholar
  41. 41.
    Walter J, Tannock GW, Tilsala-Timisjarvi A et al (2000) Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Appl Environ Microbiol 66(1):297–303CrossRefGoogle Scholar
  42. 42.
    Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Res 18: 6531-65-35Google Scholar
  43. 43.
    Woodford N, Johnson AP, Morrison D, Speller DCE (1995) Current perspective on glycopeptide resistance. Clin Microbiol Rev 8:585–615Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Maria Cristina Verdenelli
    • 1
    • 2
  • Francesca Ghelfi
    • 1
  • Stefania Silvi
    • 1
  • Carla Orpianesi
    • 1
  • Cinzia Cecchini
    • 2
  • Alberto Cresci
    • 1
    • 2
    Email author
  1. 1.Dipartimento di Scienze Morfologiche e Biochimiche ComparateUniversità di CamerinoCamerinoItaly
  2. 2.Synbiotec S.r.l.CamerinoItaly

Personalised recommendations