European Journal of Nutrition

, Volume 48, Issue 6, pp 341–347 | Cite as

Tachyphylaxis effects on postprandial oxidative stress and mitochondrial-related gene expression in overweight subjects after a period of energy restriction

  • Ana B. Crujeiras
  • Dolores Parra
  • Estíbaliz Goyenechea
  • Itziar Abete
  • J. Alfredo Martínez
Original Contribution



Postprandially induced oxidative stress can cause damage to mitochondrial components and initiate cellular degradative processes; which are related to obesity comorbidities.

Aim of the study

This trial sought to determine whether weight loss induced by caloric restriction provides antioxidant protection to reduce the postprandial response of mitochondrial function and oxidative stress markers.


A group of overweight/obese volunteers (n = 17; 39 ±7 years, 32.5 ± 4.8 kg/m2) followed an 8-week hypocaloric diet. Volunteers provided blood samples at fasting and 2-h after a test drink (CHO: 95% E, PROT: 5% E and containing antioxidants) and these were examined for postprandial oxidative stress responses, before and after the nutritional intervention. The expression of four mitochondrial-related genes, COX15, NDUFS2, MGST2 and TNF-alfa, was measured in peripheral blood mononuclear cells (PBMC) by quantitative RT-PCR. Lipid peroxidation and nitrosative stress biomarkers, total antioxidant capacity (AOP), uric acid and glutathione peroxidase were also determined.


Before nutritional treatment, the test drink induced a postprandial increase in lipid peroxidation and nitrosative stress biomarkers with a concomitant increase in the AOP. The increase in postprandial oxidative stress biomarkers was accompanied by a decrease in PBMC COX15 mRNA levels. Interestingly, after the weight loss period (−5.8 ± 2.3%), the postprandial-induced changes were lower than at the beginning of the study and involved oxidative stress biomarkers and the COX15 and MGST2 transcripts. This finding suggests the occurrence of a tachyphylactic process.


We demonstrate for the first time that the well-known effect of energy restriction on oxidative stress is accompanied by a tolerance mechanism on the postprandial oxidative stress response and mitochondrial function-related genes. Indeed, the COX15 and MGST2 gene expression assays in PBMC emerged as valuable nutrigenomic biomarkers of the oxidative response under energy-restriction conditions.


Caloric restriction Cytochrome c oxidase COX15 Oxidative stress Glutathione S-transferase PBMC gene expression 



Serum total antioxidant capacity


Body mass index (kg/m2)


Cytochrome c oxidase assembly protein


Caloric restriction


Glutathione peroxidase




Microsomal glutathione S-transferase


NADH-Coenzyme Q reductase


Nitric oxide






Peripheral blood mononuclear cell


Tumor necrosis factor alfa-related gen


Uric acid


Ultraviolet visible


  1. 1.
    Abete I, Parra D, Martinez JA (2008) Energy-restricted diets based on a distinct food selection affecting the glycemic index induce different weight loss and oxidative response. Clin Nutr 27:545–551CrossRefGoogle Scholar
  2. 2.
    Bergmann MM, Görman U, Mathers JC (2008) Bioethical considerations for human nutrigenomics. Annu Rev Nutr 28:447–467CrossRefGoogle Scholar
  3. 3.
    Block G, Dietrich M, Norkus EP, Morrow JD, Hudes M, Caan B, Packer L (2002) Factors associated with oxidative stress in human populations. Am J Epidemiol 156:274–285CrossRefGoogle Scholar
  4. 4.
    Bo S, Gambino R, Guidi S, Silli B, Gentile L, Cassader M, Pagano GF (2005) Plasma nitrotyrosine levels, antioxidant vitamins and hyperglycaemia. Diabet Med 22:1185–1189CrossRefGoogle Scholar
  5. 5.
    Bonnard C, Durand A, Peyrol S, Chanseaume E, Chauvin MA, Morio B, Vidal H, Rieusset J (2008) Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest 118:789–800Google Scholar
  6. 6.
    Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29:222–230CrossRefGoogle Scholar
  7. 7.
    Crujeiras AB, Parra D, Abete I, Martinez JA (2007) A hypocaloric diet enriched in legumes specifically mitigates lipid peroxidation in obese subjects. Free Radic Res 41:498–506CrossRefGoogle Scholar
  8. 8.
    Crujeiras AB, Parra D, Goyenechea E, Abete I, González-Muniesa P, Martínez JA (2008) Energy restriction in obese subjects impact differently two mitochondrial function markers. J Physiol Biochem 64:211–220CrossRefGoogle Scholar
  9. 9.
    Crujeiras AB, Parra D, Goyenechea E, Martínez JA (2008) Sirtuin gene expression in human mononuclear cells is modulated by caloric restriction. Eur J Clin Invest 38:672–678CrossRefGoogle Scholar
  10. 10.
    Crujeiras AB, Parra D, Milagro FI, Goyenechea E, Larrarte E, Margareto J, Martinez JA (2008) Differential expression of oxidative stress and inflammation related genes in peripheral blood mononuclear cells in response to a low-calorie diet: a nutrigenomics study. OMICS 12:251–261CrossRefGoogle Scholar
  11. 11.
    Crujeiras AB, Parra MD, Rodriguez MC, Martinez de Morentin BE, Martinez JA (2006) A role for fruit content in energy-restricted diets in improving antioxidant status in obese women during weight loss. Nutrition 22:593–599CrossRefGoogle Scholar
  12. 12.
    Chung HY, Sung B, Jung KJ, Zou Y, Yu BP (2006) The molecular inflammatory process in aging. Antioxid Redox Signal 8:572–581CrossRefGoogle Scholar
  13. 13.
    Dandona P, Aljada A, Chaudhuri A, Mohanty P, Garg R (2005) Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation 111:1448–1454CrossRefGoogle Scholar
  14. 14.
    Dandona P, Mohanty P, Ghanim H, Aljada A, Browne R, Hamouda W, Prabhala A, Afzal A, Garg R (2001) The suppressive effect of dietary restriction and weight loss in the obese on the generation of reactive oxygen species by leukocytes, lipid peroxidation, and protein carbonylation. J Clin Endocrinol Metab 86:355–362CrossRefGoogle Scholar
  15. 15.
    Fenster CP, Darley-Usmar VM, Landar AL, Gower BA, Weinsier RL, Hunter GR, Patel RP (2004) Weight loss and race modulate nitric oxide metabolism in overweight women. Free Radic Biol Med 37:695–702CrossRefGoogle Scholar
  16. 16.
    Kadenbach B, Huttemann M, Arnold S, Lee I, Bender E (2000) Mitochondrial energy metabolism is regulated via nuclear-coded subunits of cytochrome c oxidase. Free Radic Biol Med 29:211–221CrossRefGoogle Scholar
  17. 17.
    Kay CD, Holub BJ (2003) The postprandial effects of dietary antioxidants in humans. Curr Atheroscler Rep 5:452–458CrossRefGoogle Scholar
  18. 18.
    Labayen I, Diez N, Parra D, Gonzalez A, Martinez JA (2004) Basal and postprandial substrate oxidation rates in obese women receiving two test meals with different protein content. Clin Nutr 23:571–578CrossRefGoogle Scholar
  19. 19.
    Li X, Liu Z, Luo C, Jia H, Sun L, Hou B, Shen W, Packer L, Cotman CW, Liu J (2008) Lipoamide protects RPE cells from oxidative stress and mitochondrial dysfunction. Free Radic Biol Med 44:1465–1474CrossRefGoogle Scholar
  20. 20.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408CrossRefGoogle Scholar
  21. 21.
    Marti A, Martinez-Gonzalez MA, Martinez JA (2008) Interaction between genes and lifestyle factors on obesity. Proc Nutr Soc 67:1–8CrossRefGoogle Scholar
  22. 22.
    Martinez JA (2006) Mitochondrial oxidative stress and inflammation: an slalom to obesity and insulin resistance. J Physiol Biochem 62:303–306Google Scholar
  23. 23.
    Matsuzawa-Nagata N, Takamura T, Ando H, Nakamura S, Kurita S, Misu H, Ota T, Yokoyama M, Honda M, Miyamoto K, Kaneko S (2008) Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metabolism 57:1071–1077CrossRefGoogle Scholar
  24. 24.
    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419CrossRefGoogle Scholar
  25. 25.
    Mera RTH, Prasad C (1998) How to calculate sample size for an experiment: a case-based description. Nutr Neurosci 1:87–91Google Scholar
  26. 26.
    Milagro FI, Campion J, Martinez JA (2007) 11-beta Hydroxysteroid dehydrogenase type 2 expression in white adipose tissue is strongly correlated with adiposity. J Steroid Biochem Mol Biol 104:81–84CrossRefGoogle Scholar
  27. 27.
    Mohanty P, Ghanim H, Hamouda W, Aljada A, Garg R, Dandona P (2002) Both lipid and protein intakes stimulate increased generation of reactive oxygen species by polymorphonuclear leukocytes and mononuclear cells. Am J Clin Nutr 75:767–772Google Scholar
  28. 28.
    Mohanty P, Hamouda W, Garg R, Aljada A, Ghanim H, Dandona P (2000) Glucose challenge stimulates reactive oxygen species (ROS) generation by leucocytes. J Clin Endocrinol Metab 85:2970–2973CrossRefGoogle Scholar
  29. 29.
    Natella F, Ghiselli A, Guidi A, Ursini F, Scaccini C (2001) Red wine mitigates the postprandial increase of LDL susceptibility to oxidation. Free Radic Biol Med 30:1036–1044CrossRefGoogle Scholar
  30. 30.
    OMS-WHO (2000) Obesity: preventing and managing the global epidemic. Report of WHO consultation. Word Health Organ Tech Resp Ser 894:1–253Google Scholar
  31. 31.
    Patel C, Ghanim H, Ravishankar S, Sia CL, Viswanathan P, Mohanty P, Dandona P (2007) Prolonged reactive oxygen species generation and nuclear factor-kappaB activation after a high-fat, high-carbohydrate meal in the obese. J Clin Endocrinol Metab 92:4476–4479CrossRefGoogle Scholar
  32. 32.
    Perez de Obanos MP, Lopez-Zabalza MJ, Arriazu E, Modol T, Prieto J, Herraiz MT, Iraburu MJ (2007) Reactive oxygen species (ROS) mediate the effects of leucine on translation regulation and type I collagen production in hepatic stellate cells. Biochim Biophys Acta 1773:1681–1688CrossRefGoogle Scholar
  33. 33.
    Valerio A, Cardile A, Cozzi V, Bracale R, Tedesco L, Pisconti A, Palomba L, Cantoni O, Clementi E, Moncada S, Carruba MO, Nisoli E (2006) TNF-alpha downregulates eNOS expression and mitochondrial biogenesis in fat and muscle of obese rodents. J Clin Invest 116:2791–2798Google Scholar
  34. 34.
    Vincent HK, Taylor AG (2006) Biomarkers and potential mechanisms of obesity-induced oxidant stress in humans. Int J Obes (Lond) 30:400–418CrossRefGoogle Scholar
  35. 35.
    Wiswedel I, Hirsch D, Kropf S, Gruening M, Pfister E, Schewe T, Sies H (2004) Flavanol-rich cocoa drink lowers plasma F(2)-isoprostane concentrations in humans. Free Radic Biol Med 37:411–421CrossRefGoogle Scholar
  36. 36.
    Zhao G, Etherton TD, Martin KR, Gillies PJ, West SG, Kris-Etherton PM (2007) Dietary alpha-linolenic acid inhibits proinflammatory cytokine production by peripheral blood mononuclear cells in hypercholesterolemic subjects. Am J Clin Nutr 85:385–391Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Ana B. Crujeiras
    • 1
  • Dolores Parra
    • 1
  • Estíbaliz Goyenechea
    • 1
  • Itziar Abete
    • 1
  • J. Alfredo Martínez
    • 1
  1. 1.Department of Nutrition and Food Sciences, Physiology and ToxicologyUniversity of NavarraPamplonaSpain

Personalised recommendations