Advertisement

Effects of high and normal soyprotein breakfasts on satiety and subsequent energy intake, including amino acid and ‘satiety’ hormone responses

  • Margriet A. B. Veldhorst
  • Arie G. Nieuwenhuizen
  • Ananda Hochstenbach-Waelen
  • Klaas R. Westerterp
  • Marielle P. K. J. Engelen
  • Robert-Jan M. Brummer
  • Nicolaas E. P. Deutz
  • Margriet S. Westerterp-Plantenga
ORIGINAL CONTRIBUTION

Abstract

Background

The role of dietary protein in short term satiety is of interest with respect to body weight regulation.

Aim

To compare the effects of a high versus a normal soyprotein breakfast on satiety and subsequent energy intake (EI), including ‘satiety’ hormones and plasma amino acid responses.

Methods

Twenty-five healthy subjects (mean ± SEM, BMI: 23.9 ± 0.3 kg/m2; age: 22 ± 1 years) received a subject-specific standardized breakfast: a custard with soy as single protein type with either 10/55/35 (normal-protein) or 25/55/20 (high-protein) En% protein/carbohydrate/fat in a randomized, single-blind design. Appetite profile (Visual Analogue Scale, VAS), plasma glucose, insulin, Glucagon-like Peptide 1, ghrelin, and amino acid concentrations were determined for 4 h, determining the sensitive time point to assess EI. Since at 180 min glucose and insulin concentrations still were significantly different, in a second set of experiments subjects received an ad lib lunch at 180 min after the breakfasts; EI was assessed.

Results

Overall the 25 En% soy-custard was rated as being more satiating than the 10 En% soy-custard (P < 0.01) and there was a difference at 20 min after breakfast (64 ± 5 vs. 52 ± 5 mmVAS, P < 0.05), related to higher postprandial taurine concentrations (P < 0.05). Insulin response was increased more after the 25 En% than after the 10 En% soy-custard (AUC: 7,520 ± 929 vs. 4,936 ± 468 mU/l h, P < 0.001). There was no difference in EI (25 En%: 3,212 ± 280 kJ vs. 10 En%: 3,098 ± 286 kJ, ns).

Conclusion

A high soyprotein breakfast is more satiating than a normal soyprotein breakfast related to elevated taurine and insulin concentrations.

Keywords

satiety energy intake soyprotein taurine insulin 

Notes

Acknowledgments

M. A. B. Veldhorst, A. G. Nieuwenhuizen, A. Hochstenbach-Waelen, K. R. Westerterp, M. P. K. J. Engelen, R.-J. M. Brummer, N. E. P. Deutz, and M. S. Westerterp-Plantenga designed the study. M. A. B. Veldhorst and A. Hochstenbach-Waelen collected and analyzed the data. M. A. B. Veldhorst wrote the manuscript and A. G. Nieuwenhuizen, K. R. Westerterp, M. P. K. J. Engelen, N. E. P. Deutz, and M. S. Westerterp-Plantenga contributed to interpretation of the data and reviewed the manuscript. The study was executed under supervision of A. G. Nieuwenhuizen, K. R. Westerterp, and M. S. Westerterp-Plantenga. Conflict of interest None of the authors had a personal or financial conflict of interest.

References

  1. 1.
    Adam TC, Westerterp-Plantenga MS (2005) Nutrient-stimulated GLP-1 release in normal-weight men and women. Horm Metab Res 37:111–117CrossRefGoogle Scholar
  2. 2.
    Anderson GH, Tecimer SN, Shah D, Zafar TA (2004) Protein source, quantity, and time of consumption determine the effect of proteins on short-term food intake in young men. J Nutr 134:3011–3015Google Scholar
  3. 3.
    Bertenshaw EJ, Lluch A, Yeomans MR (2008) Satiating effects of protein but not carbohydrate consumed in a between-meal beverage context. Physiol Behav 93:427–436CrossRefGoogle Scholar
  4. 4.
    Clifton PM, Keogh JB, Noakes M (2008) Long-term effects of a high-protein weight-loss diet. Am J Clin Nutr 87:23–29Google Scholar
  5. 5.
    Crovetti R, Porrini M, Santangelo A, Testolin G (1998) The influence of thermic effect of food on satiety. Eur J Clin Nutr 52:482–488CrossRefGoogle Scholar
  6. 6.
    Fujihira E, Takahashi H, Nakazawa M (1970) Effect of long-term feeding of taurine in hereditary hyperglycemic obese mice. Chem Pharm Bull (Tokyo) 18:1636–1642Google Scholar
  7. 7.
    Halton TL, Hu FB (2004) The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review. J Am Coll Nutr 23:373–385Google Scholar
  8. 8.
    Harris JA, Benedict FG (1919) A biometric study of basal metabolism in manGoogle Scholar
  9. 9.
    Ishihara K, Fukuchi Y, Mizunoya W, Mita Y, Fukuya Y, Fushiki T, Yasumoto K (2003) Amino acid composition of soybean protein increased postprandial carbohydrate oxidation in diabetic mice. Biosci Biotechnol Biochem 67:2505–2511CrossRefGoogle Scholar
  10. 10.
    Jeevanandam M, Ramias L, Schiller WR (1991) Altered plasma free amino acid levels in obese traumatized man. Metabolism 40:385–390CrossRefGoogle Scholar
  11. 11.
    Laidlaw SA, Grosvenor M, Kopple JD (1990) The taurine content of common foodstuffs. JPEN J Parenter Enter Nutr 14:183–188CrossRefGoogle Scholar
  12. 12.
    Lejeune MP, Kovacs EM, Westerterp-Plantenga MS (2005) Additional protein intake limits weight regain after weight loss in humans. Br J Nutr 93:281–289CrossRefGoogle Scholar
  13. 13.
    Munro HN (1976) Second Boyd Orr Memorial Lecture. Regulation of body protein metabolism in relation to diet. Proc Nutr Soc 35:297–308CrossRefGoogle Scholar
  14. 14.
    Pi-Sunyer FX (1993) Medical hazards of obesity. Ann Intern Med 119:655–660Google Scholar
  15. 15.
    Seidell JC (1995) Obesity in Europe. Obes Res 3(Suppl 2):89s–93sGoogle Scholar
  16. 16.
    Senn S (2006) Cross-over trials in Statistics in Medicine: the first ‘25’ years. Stat Med 25:3430–3442CrossRefGoogle Scholar
  17. 17.
    Skov AR, Toubro S, Ronn B, Holm L, Astrup A (1999) Randomized trial on protein vs carbohydrate in ad libitum fat reduced diet for the treatment of obesity. Int J Obes Relat Metab Disord 23:528–536CrossRefGoogle Scholar
  18. 18.
    Spaaij CJ, Pijls LT (2004) New dietary reference intakes in the Netherlands for energy, proteins, fats and digestible carbohydrates. Eur J Clin Nutr 58:191–194CrossRefGoogle Scholar
  19. 19.
    Stipanuk MH (2004) Role of the liver in regulation of body cysteine and taurine levels: a brief review. Neurochem Res 29:105–110CrossRefGoogle Scholar
  20. 20.
    Stipanuk MH, Dominy JE Jr, Lee JI, Coloso RM (2006) Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. J Nutr 136:1652S–1659SGoogle Scholar
  21. 21.
    Stubbs RJ, Hughes DA, Johnstone AM, Rowley E, Reid C, Elia M, Stratton R, Delargy H, King N, Blundell JE (2000) The use of visual analogue scales to assess motivation to eat in human subjects: a review of their reliability and validity with an evaluation of new hand-held computerized systems for temporal tracking of appetite ratings. Br J Nutr 84:405–415CrossRefGoogle Scholar
  22. 22.
    Stunkard AJ, Messick S (1985) The three-factor eating questionnaire to measure dietary restraint, disinhibition and hunger. J Psychosom Res 29:71–83CrossRefGoogle Scholar
  23. 23.
    Thut PD, Hruska RE, Huxtable RJ, Bressler R (1976) Taurine. Huxtable RJ, Barbeau A (eds) pp 357–364Google Scholar
  24. 24.
    Uhe AM, Collier GR, O’Dea K (1992) A comparison of the effects of beef, chicken and fish protein on satiety and amino acid profiles in lean male subjects. J Nutr 122:467–472Google Scholar
  25. 25.
    van Eijk HM, Rooyakkers DR, Deutz NE (1993) Rapid routine determination of amino acids in plasma by high-performance liquid chromatography with a 2–3 microns Spherisorb ODS II column. J Chromatogr 620:143–148CrossRefGoogle Scholar
  26. 26.
    VanderWeele DA (1994) Insulin is a prandial satiety hormone. Physiol Behav 56:619–622CrossRefGoogle Scholar
  27. 27.
    Velasquez MT, Bhathena SJ (2007) Role of dietary soy protein in obesity. Int J Med Sci 4:72–82Google Scholar
  28. 28.
    Weigle DS, Breen PA, Matthys CC, Callahan HS, Meeuws KE, Burden VR, Purnell JQ (2005) A high-protein diet induces sustained reductions in appetite, ad libitum caloric intake, and body weight despite compensatory changes in diurnal plasma leptin and ghrelin concentrations. Am J Clin Nutr 82:41–48Google Scholar
  29. 29.
    Westerterp-Plantenga MS, Luscombe-Marsh N, Lejeune MP, Diepvens K, Nieuwenhuizen A, Engelen MP, Deutz NE, Azzout-Marniche D, Tome D, Westerterp KR (2006) Dietary protein, metabolism, and body-weight regulation: dose-response effects. Int J Obes (Lond) 30(Suppl 3):S16–S23CrossRefGoogle Scholar
  30. 30.
    Westerterp-Plantenga MS, Westerterp KR, Rubbens M, Verwegen CR, Richelet JP, Gardette B (1999) Appetite at “high altitude” [Operation Everest III (Comex-‘97)]: a simulated ascent of Mount Everest. J Appl Physiol 87:391–399Google Scholar
  31. 31.
    Westerterp KR, Kester AD (2003) Physical activity in confined conditions as an indicator of free-living physical activity. Obes Res 11:865–868CrossRefGoogle Scholar
  32. 32.
    Woods SC, Chavez M, Park CR, Riedy C, Kaiyala K, Richardson RD, Figlewicz DP, Schwartz MW, Porte D Jr, Seeley RJ (1996) The evaluation of insulin as a metabolic signal influencing behavior via the brain. Neurosci Biobehav Rev 20:139–144CrossRefGoogle Scholar
  33. 33.
    Young VR (1991) Soy protein in relation to human protein and amino acid nutrition. J Am Diet Assoc 91:828–835Google Scholar
  34. 34.
    Zhang M, Bi LF, Fang JH, Su XL, Da GL, Kuwamori T, Kagamimori S (2004) Beneficial effects of taurine on serum lipids in overweight or obese non-diabetic subjects. Amino Acids 26:267–271Google Scholar

Copyright information

© Steinkopff Verlag Darmstadt 2009

Authors and Affiliations

  • Margriet A. B. Veldhorst
    • 1
    • 2
  • Arie G. Nieuwenhuizen
    • 1
    • 2
  • Ananda Hochstenbach-Waelen
    • 1
    • 2
  • Klaas R. Westerterp
    • 1
    • 2
  • Marielle P. K. J. Engelen
    • 3
  • Robert-Jan M. Brummer
    • 2
  • Nicolaas E. P. Deutz
    • 2
    • 3
  • Margriet S. Westerterp-Plantenga
    • 1
    • 2
  1. 1.Dept. of Human Biology Nutrition and Toxicology Research Institute (NUTRIM)Maastricht UniversityMaastrichtThe Netherlands
  2. 2.Top Institute Food and NutritionWageningenThe Netherlands
  3. 3.Dept. of Surgery, Nutrition and Toxicology Research Institute (NUTRIM)Maastricht UniversityMaastrichtThe Netherlands

Personalised recommendations