European Journal of Nutrition

, Volume 47, Issue 4, pp 171–182 | Cite as

Bioactive peptides and proteins from foods: indication for health effects

  • Niels Peter Möller
  • Katharina Elisabeth Scholz-Ahrens
  • Nils Roos
  • Jürgen SchrezenmeirEmail author


Some dietary proteins cause specific effects going beyond nutrient supply. A number of proteins seem to act directly in the intestine, such as IGFs, lactoferrin and immunoglobulins. Many substances, however, are peptides encrypted in intact molecules and are released from their encrypted position by enzymes during gastrointestinal transit or by fermentation or ripening during food processing. Among food-derived bioactive proteins and peptides from plants and animals, those obtained from milk are known in particular. Numerous effects have been described after in vitro and animal trials for bioactive proteins and peptides, such as immunomodulating, antihypertensive, osteoprotective, antilipemic, opiate, antioxidative and antimicrobial. This article reviews the current knowledge of the existence of bioactive proteins and of in vitro bioactivity and the present evidence of health effects exerted by such substances or products containing bioactive compounds. For example, there is evidence for the antihypertensive effects of milk products fermented with Lactobacillus helveticus containing the tripeptides IPP and VPP, which inhibit angiotensin converting enzyme, and for osteoprotective effects by milk basic protein. There is less profound evidence on the immunomodulating effects of lactoferrin and postprandial triglyceride reduction by a hydrolysate of bovine hemoglobin.


bioactive proteins bioactive peptides food proteins immunomodulation antihypertensive activity osteoprotection antilipemic activity 


  1. 1.
    Adibi SA, Morse EL (1971) Intestinal transport of dipeptides in man: relative importance of hydrolysis and intact absorption. J Clin Invest 50: 2266–2275Google Scholar
  2. 2.
    Aoe S, Koyama T, Toba Y, Itabashi A, Takada Y (2005) A controlled trial of the effect of milk basic protein (MBP) supplementation on bone metabolism in healthy menopausal women. Osteoporos Int 16:2123–2128Google Scholar
  3. 3.
    Aoe S, Toba Y, Yamamura J, Kawakami H, Yahiro M, Kumegawa M, Itabashi A, Takada Y (2001) Controlled trial of the effects of milk basic protein (MBP) supplementation on bone metabolism in healthy adult women. Biosci Biotechnol Biochem 65:913–918Google Scholar
  4. 4.
    Bal dit Sollier C, Drouet L, Pignaud G, Chevallier C, Caen J, Fiat AM, Izquierdo C, Jolles P (1996) Effect of kappa-casein split peptides on platelet aggregation and on thrombus formation in the guinea-pig. Thromb Res 81:427–437Google Scholar
  5. 5.
    Barta O, Barta VD, Crisman MV, Akers RM (1991) Inhibition of lymphocyte blastogenesis by whey. Am J Vet Res 52:247–253Google Scholar
  6. 6.
    Bocan TM, Mueller SB, Uhlendorf PD, Newton RS, Krause BR (1991) Comparison of CI-976, an ACAT inhibitor, and selected lipid-lowering agents for antiatherosclerotic activity in iliac-femoral and thoracic aortic lesions. A biochemical, morphological, and morphometric evaluation. Arterioscler Thromb 11:1830–1843Google Scholar
  7. 7.
    Borel P, Lairon D, Termine E, Grataroli R, Lafont H (1989) Isolation and properties of lipolysis inhibitory proteins from wheat germ and wheat bran. Plant Foods Hum Nutr 39:339–348Google Scholar
  8. 8.
    Bullen JJ, Rogers HJ, Leigh L (1972) Iron-binding proteins in milk and resistance to Escherichia coli infection in infants. Br Med J 1:69–75Google Scholar
  9. 9.
    Carr RI, Webster D, Sadi D, Williams H, Walsh N (1990) Immunomodulation by opioids from dietary casein. Ann NY Acad Sci 594:374–376Google Scholar
  10. 10.
    Carriere F, Renou C, Ransac S, Lopez V, De Caro J, Ferrato F, De Caro A, Fleury A, Sanwald-Ducray P, Lengsfeld H, Beglinger C, Hadvary P, Verger R, Laugier R (2001) Inhibition of gastrointestinal lipolysis by Orlistat during digestion of test meals in healthy volunteers. Am J Physiol Gastrointest Liver Physiol 281:G16–G28Google Scholar
  11. 11.
    Chen HM, Muramoto K, Yamauchi F (1995) Structural analysis of antioxidative peptides from soybean b-Conglycinin. J Agric Food Chem 43:574–578Google Scholar
  12. 12.
    Cornish J, Palmano K, Callon KE, Watson M, Lin JM, Valenti P, Naot D, Grey AB, Reid IR (2006) Lactoferrin and bone; structure–activity relationships. Biochem Cell Biol 84:297–302Google Scholar
  13. 13.
    Cross ML, Gill HS (2000) Immunomodulatory properties of milk. Br J Nutr 84:S81–S89Google Scholar
  14. 14.
    Crouch SP, Slater KJ, Fletcher J (1992) Regulation of cytokine release from mononuclear cells by the iron-binding protein lactoferrin. Blood 80:235–240Google Scholar
  15. 15.
    Dent MP, O’Hagan S, Braun WH, Schaetti P, Marburger A, Vogel O (2007) A 90-day subchronic toxicity study and reproductive toxicity studies on ACE-inhibiting lactotripeptide. Food Chem Toxicol 45:1468–1477Google Scholar
  16. 16.
    Donovan SM, Odle J (1994) Growth factors in milk as mediators of infant development. Annu Rev Nutr 14:147–167Google Scholar
  17. 17.
    Drent ML, Larsson I, William-Olsson T, Quaade F, Czubayko F, von Bergmann K, Strobel W, Sjostrom L, van der Veen EA (1995) Orlistat (Ro 18-0647), a lipase inhibitor, in the treatment of human obesity: a multiple dose study. Int J Obes Relat Metab Disord 19:221–226Google Scholar
  18. 18.
    Drescher K, Roos N, Pfeuffer M, Seyfert HM, Schrezenmeir J, Hagemeister H (1999) Recovery of 15N-lactoferrin is higher than that of 15N-casein in the small intestine of suckling, but not adult miniature pigs. J Nutr 129:1026–1030Google Scholar
  19. 19.
    Duarte J, Vinderola G, Ritz B, Perdigon G, Matar C (2006) Immunomodulating capacity of commercial fish protein hydrolysate for diet supplementation. Immunobiology 211:341–350Google Scholar
  20. 20.
    Duranti M, Lovati MR, Dani V, Barbiroli A, Scarafoni A, Castiglioni S, Ponzone C, Morazzoni P (2004) The alpha’ subunit from soybean 7S globulin lowers plasma lipids and upregulates liver beta-VLDL receptors in rats fed a hypercholesterolemic diet. J Nutr 134:1334–1339Google Scholar
  21. 21.
    Farnaud S, Evans RW (2003) Lactoferrin-a multifunctional protein with antimicrobial properties. Mol Immunol 40:395–405Google Scholar
  22. 22.
    Fujita H, Yoshikawa M (1999) LKPNM: a prodrug-type ACE-inhibitory peptide derived from fish protein. Immunopharmacology 44: 123–127Google Scholar
  23. 23.
    Gobbetti M, Smacchi E, Corsetti A, Bellucci M (1997) Inhibition of proteolytic enzymes from Pseudomonas fluorescens ATCC 948 and angiotensin I-converting enzyme by peptides from zein, hordein and gluten hydrolysates. J Food Protect 60:499–504Google Scholar
  24. 24.
    Gustafsson L, Leijonhufvud I, Aronsson A, Mossberg AK, Svanborg C (2004) Treatment of skin papillomas with topical alpha-lactalbumin-oleic acid. N Engl J Med 350:2663–2672Google Scholar
  25. 25.
    Hansen M, Sandstrom B, Jensen M, Sorensen SS (1997) Casein phosphopeptides improve zinc and calcium absorption from rice-based but not from whole-grain infant cereal. J Pediatr Gastroenterol Nutr 24:56–62Google Scholar
  26. 26.
    Hara H, Funabiki R, Iwata M, Yamazaki K (1984) Portal absorption of small peptides in rats under unrestrained conditions. J Nutr 114:1122–1129Google Scholar
  27. 27.
    Hata I, Higashiyama S, Otani H (1998) Identification of a phosphopeptide in bovine alpha s1-casein digest as a factor influencing proliferation and immunoglobulin production in lymphocyte cultures. J Dairy Res 65:569–578Google Scholar
  28. 28.
    Hata Y, Yamamoto M, Ohni M, Nakajima K, Nakamura Y, Takano T (1996) A placebo-controlled study of the effect of sour milk on blood pressure in hypertensive subjects. Am J Clin Nutr 64:767–771Google Scholar
  29. 29.
    Hollander PA, Elbein SC, Hirsch IB, Kelley D, McGill J, Taylor T, Weiss SR, Crockett SE, Kaplan RA, Comstock J, Lucas CP, Lodewick PA, Canovatchel W, Chung J, Hauptman J (1998) Role of orlistat in the treatment of obese patients with type 2 diabetes. A 1-year randomized double-blind study. Diabetes Care 21:1288–1294Google Scholar
  30. 30.
    Janusz M, Wieczorek Z, Spiegel K, Kubik A, Szewczuk Z, Siemion I, Lisowski J (1987) Immunoregulatory properties of synthetic peptides, fragments of a proline-rich polypeptide (PRP) from ovine colostrum. Mol Immunol 24:1029–1031Google Scholar
  31. 31.
    Jauhiainen T, Vapaatalo H, Poussa T, Kyronpalo S, Rasmussen M, Korpela R (2005) Lactobacillus helveticus fermented milk lowers blood pressure in hypertensive subjects in 24-h ambulatory blood pressure measurement. Am J Hypertens 18:1600–1605Google Scholar
  32. 32.
    Jolles P, Fiat A-M, Migliore-Samour D, Drouet L, Caen JP (1993) Peptides from milk proteins implicated in antithrombosis and immunomodulation. In: Benner B, Sawatzki G (eds) New perspectives in infant nutrition, symposium Antwerp. Thieme Medical Publishers, New York, pp 160–172Google Scholar
  33. 33.
    Jolles P, Levy-Toledano S, Fiat AM, Soria C, Gillessen D, Thomaidis A, Dunn FW, Caen JP (1986) Analogy between fibrinogen and casein. Effect of an undecapeptide isolated from kappa-casein on platelet function. Eur J Biochem 158:379–382Google Scholar
  34. 34.
    Julius MH, Janusz M, Lisowski J (1988) A colostral protein that induces the growth and differentiation of resting B lymphocytes. J Immunol 140:1366–1371Google Scholar
  35. 35.
    Kagawa K, Matsutaka H, Fukuhama C, Fujino H, Okuda H (1998) Suppressive effect of globin digest on postprandial hyperlipidemia in male volunteers. J Nutr 128:56–60Google Scholar
  36. 36.
    Kagawa K, Matsutaka H, Fukuhama C, Watanabe Y, Fujino H (1996) Globin digest, acidic protease hydrolysate, inhibits dietary hypertriglyceridemia and Val-Val-Tyr-Pro, one of its constituents, possesses most superior effect. Life Sci 58:1745–1755Google Scholar
  37. 37.
    Kanauchi O, Igarashi K, Ogata R, Mitsuyama K, Andoh A (2005) A yeast extract high in bioactive peptides has a blood-pressure lowering effect in hypertensive model. Curr Med Chem 12:3085–3090Google Scholar
  38. 38.
    Kayser H, Meisel H (1996) Stimulation of human peripheral blood lymphocytes by bioactive peptides derived from bovine milk proteins. FEBS Lett 383:18–20Google Scholar
  39. 39.
    Kitts DD, Yuan YV, Nagasawa T, Moriyama Y (1992) Effect of casein, casein phosphopeptides and calcium intake on ileal 45Ca disappearance and temporal systolic blood pressure in spontaneously hypertensive rats. Br J Nutr 68:765–781Google Scholar
  40. 40.
    Kopra N, Scholz-Ahrens KE, Barth CA (1992) Effect of casein phosphopeptides on utilisation in vitamin deplete and vitamin D-deficient rats. Milchwissenschaften 47:488–493Google Scholar
  41. 41.
    Kulczycki A Jr, Nash GS, Bertovich MJ, Burack HD, MacDermott RP (1987) Bovine milk IgG, but not serum IgG, inhibits pokeweed mitogen-induced antibody secretion by human peripheral blood mononuclear cells. J Clin Immunol 7:37–45Google Scholar
  42. 42.
    Laursen I, Briand P, Lykkesfeldt AE (1990) Serum albumin as a modulator on growth of the human breast cancer cell line, MCF-7. Anticancer Res 10:343–351Google Scholar
  43. 43.
    Lindmark-Mansson H, Akesson B (2000) Antioxidative factors in milk. Br J Nutr 84(suppl 1):S103–S110Google Scholar
  44. 44.
    Maeno M, Yamamoto N, Takano T (1996) Identification of an antihypertensive peptide from casein hydrolysate produced by a proteinase from Lactobacillus helveticus CP790. J Dairy Sci 79:1316–1321Google Scholar
  45. 45.
    Maes W, Van Camp J, Vermeirssen V, Hemeryck M, Ketelslegers JM, Schrezenmeir J, Van Oostveldt P, Huyghebaert A (2004) Influence of the lactokinin Ala-Leu-Pro-Met-His-Ile-Arg (ALPMHIR) on the release of endothelin-1 by endothelial cells. Regul Pept 118:105–109Google Scholar
  46. 46.
    Marnila P, Rokka S, Rehnberg-Laiho L, Karkkainen P, Kosunen TU, Rautelin H, Hanninen ML, Syvaoja EL, Korhonen H (2003) Prevention and suppression of Helicobacter felis infection in mice using colostral preparation with specific antibodies. Helicobacter 8:192–201Google Scholar
  47. 47.
    Masuda O, Nakamura Y, Takano T (1996) Antihypertensive peptides are present in aorta after oral administration of sour milk containing these peptides to spontaneously hypertensive rats. J Nutr 126:3063–3068Google Scholar
  48. 48.
    Matsui T, Li CH, Osajima Y (1999) Preparation and characterization of novel bioactive peptides responsible for angiotensin I-converting enzyme inhibition from wheat germ. J Pept Sci 5:289–297Google Scholar
  49. 49.
    Megias C, del Mar Yust M, Pedroche J, Lquari H, Giron-Calle J, Alaiz M, Millan F, Vioque J (2004) Purification of an ACE inhibitory peptide after hydrolysis of sunflower (Helianthus annuus L.) protein isolates. J Agric Food Chem 52:1928–1932Google Scholar
  50. 50.
    Migliore-Samour D, Floc’h F, Jolles P (1989) Biologically active casein peptides implicated in immunomodulation. J Dairy Res 56:357–362Google Scholar
  51. 51.
    Miyoshi S, Kaneko T, Ishikawa H, Tanaka H, Maruyama S (1995) Production of bioactive peptides from corn endosperm proteins by some proteases. Ann N Y Acad Sci 750:429–431Google Scholar
  52. 52.
    Mullally MM, Meisel H, FitzGerald RJ (1997) Identification of a novel angiotensin-I-converting enzyme inhibitory peptide corresponding to a tryptic fragment of bovine beta-lactoglobulin. FEBS Lett 402:99–101Google Scholar
  53. 53.
    Nagasawa T, Yuan YV, Kitts DD (1991) Casein phosphopeptides enhance paracellular calcium absorption but do not alter temporal blood pressure in normotensive rats. Nutr Res 11:819–830Google Scholar
  54. 54.
    Najjar VA, Nishioka K (1970) “Tuftsin”: a natural phagocytosis stimulating peptide. Nature 228:672–673Google Scholar
  55. 55.
    Nakamura Y, Yamamoto N, Sakai K, Okubo A, Yamazaki S, Takano T (1995) Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk. J Dairy Sci 78:777–783Google Scholar
  56. 56.
    Naot D, Grey A, Reid IR, Cornish J (2005) Lactoferrin-a novel bone growth factor. Clin Med Res 3:93–101Google Scholar
  57. 57.
    Narva M, Karkkainen M, Poussa T, Lamberg-Allardt C, Korpela R (2003) Caseinphosphopeptides in milk and fermented milk do not affect calcium metabolism acutely in postmenopausal women. J Am Coll Nutr 22: 88–93Google Scholar
  58. 58.
    Okitsu M, Morita A, Kakitani M, Okada M, Yokogoshi H (1995) Inhibition of the endothelin-converting enzyme by pepsin digests of food proteins. Biosci Biotechnol Biochem 59:325–326Google Scholar
  59. 59.
    Oshima G, Shimabukuro H, Nagasawa K (1979) Peptide inhibitors of angiotensin I-converting enzyme in digests of gelatin by bacterial collagenase. Biochim Biophys Acta 566:128–137Google Scholar
  60. 60.
    Otani H, Hata I (1995) Inhibition of proliferative responses of mouse spleen lymphocytes and rabbit Peyer’s patch cells by bovine milk caseins and their digests. J Dairy Res 62:339–348Google Scholar
  61. 61.
    Otani H, Monnai M, Hosono A (1992) Bovine κ-casein as inhibitor of the proliferation of mouse splenocytes induced by lipopolysaccharide stimulation. Milchwissenschaften 47:512–515Google Scholar
  62. 62.
    Papenburg R, Bounous G, Fleiszer D, Gold P (1990) Dietary milk proteins inhibit the development of dimethylhydrazine-induced malignancy. Tumour Biol 11:129–136Google Scholar
  63. 63.
    Paroli E (1988) Opioid peptides from food (the exorphins). World Rev Nutr Diet 55:58–97Google Scholar
  64. 64.
    Pihlanto-Leppälä A, Koskinen P, Piilola K, Tupasela T, Korhonen H (2000) Angiotensin I-converting enzyme inhibitory properties of whey protein digests: concentration and characterization of active peptides. J Dairy Res 67:53–64Google Scholar
  65. 65.
    Playford RJ, Macdonald CE, Johnson WS (2000) Colostrum and milk- derived peptide growth factors for the treatment of gastrointestinal disorders. Am J Clin Nutr 72:5–14Google Scholar
  66. 66.
    Rejmann JJ, Lewis MJ, Oliver SP (1993) Enhancement of mammary gland mononuclear cell proliferation by interleukin-2 in the presence of lactoferrin. Food Agric Immunol 5:51–56Google Scholar
  67. 67.
    Reynolds EC (1998) Anticariogenic complexes of amorphous calcium phosphate stabilized by casein phosphopeptides: a review. Spec Care Dentist 18:8–16Google Scholar
  68. 68.
    Rival SG, Boeriu CG, Wichers HJ (2001) Caseins and casein hydrolysates. 2. Antioxidative properties and relevance to lipoxygenase inhibition. J Agric Food Chem 49:295–302Google Scholar
  69. 69.
    Rival SG, Fornaroli S, Boeriu CG, Wichers HJ (2001) Caseins and casein hydrolysates. 1. Lipoxygenase inhibitory properties. J Agric Food Chem 49:287–294Google Scholar
  70. 70.
    Roberts A, Parker C, Grundy I, de Jonge-Levitan L, Most M, Ferguson J, Greenway F (2006) Globin digest: no evidence for a weight loss mechanism. J Med Food 9:579–581Google Scholar
  71. 71.
    Roos N, Klempt M, Rautenberg P, Krüger V, Laue C, Sick H, Erichsen H, Schrezenmeir J (unpublished data) Impact of an oral supplementation of bovine lactoferrin on the immune response before and after influenza vaccination in elderly subjectsGoogle Scholar
  72. 72.
    Roos N, Mahe S, Benamouzig R, Sick H, Rautureau J, Tome D (1995) 15N-labeled immunoglobulins from bovine colostrum are partially resistant to digestion in human intestine. J Nutr 125:1238–1244Google Scholar
  73. 73.
    Roos N, Möller J, Laue C, Chang T, Schrezenmeir J (unpublished data) Protamine failed to decrease postprandial triglyceride levels after a liquid meal in humans with mild hypertriglyceridemiaGoogle Scholar
  74. 74.
    Saito H, Takase M, Tamura Y, Shimamura S, Tomita M (1994) Physicochemical and antibacterial properties of lactoferrin and its hydrolysate produced by heat treatment at acidic pH. Adv Exp Med Biol 357:219–226Google Scholar
  75. 75.
    Satake M, Enjoh M, Nakamura Y, Takano T, Kawamura Y, Arai S, Shimizu M (2002) Transepithelial transport of the bioactive tripeptide, Val-Pro-Pro, in human intestinal Caco-2 cell monolayers. Biosci Biotechnol Biochem 66:378–384Google Scholar
  76. 76.
    Sato R, Noguchi T, Naito H (1986) Casein phosphopeptide (CPP) enhances calcium absorption from the ligated segment of rat small intestine. J Nutr Sci Vitaminol (Tokyo) 32:67–76Google Scholar
  77. 77.
    Sato R, Noguchi T, Naito H (1983) The necessity for the phosphate portion of casein molecules to enhance Ca absorption from the small intestine. Agric Biol Chem 47:2415–2417Google Scholar
  78. 78.
    Satouchi K, Mori T, Matsushita S (1974) Characterization of inhibitor protein for lipase in soybean seeds. Agr Biol Chem 38:97–101Google Scholar
  79. 79.
    Scholz-Ahrens KE, Ackermann J, de Vrese M, Barth CA (1993) Effect of casein on the antagonistic action of dietary phytate on calcium absorption in rats. In: Schlemmer U (ed) Bioavailability ‘93, nutritional, chemical and food progressing implications of nutrient availability, Berichte der BFE, Karlsruhe, pp 215–218Google Scholar
  80. 80.
    Scholz-Ahrens KE, de Vrese M, Barth CA (1991) Influence of casein-derived phophopeptides on the bioavailability of calcium in vitamin D-deficient miniature pigs. In: Norman AW, Bouillon R, Thomasset M (eds) Gene regulation, structure–function analysis and clinical application, W de Gruyter, Berlin, pp 724–725Google Scholar
  81. 81.
    Scholz-Ahrens KE, Kopra N, Barth CA (1990) Effect of casein phosphopeptides on utilization of calcium in minipigs and vitamin-D-deficient rats. Z Ernährungswiss 29:295–298Google Scholar
  82. 82.
    Scholz-Ahrens KE, Schrezenmeir J (2000) Effects of bioactive substances in milk on mineral and trace element metabolism with special reference to casein phosphopeptides. Br J Nutr 84(suppl 1):S147–S153Google Scholar
  83. 83.
    Schrezenmeir J, Keppler I, Fenselau S, Weber P, Biesalski HK, Probst R, Laue C, Zuchhold HD, Prellwitz W, Beyer J (1993) The phenomenon of a high triglyceride response to an oral lipid load in healthy subjects and its link to the metabolic syndrome. Ann N Y Acad Sci 683:302–314Google Scholar
  84. 84.
    Schrezenmeir J, Korhonen H, Williams M, Gill HS, Shah NP (2000) Foreword. Br J Nutr 84:S1Google Scholar
  85. 85.
    Seppo L, Jauhiainen T, Poussa T, Korpela R (2003) A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects. Am J Clin Nutr 77:326–330Google Scholar
  86. 86.
    Severin S, Wenshui X (2005) Milk biologically active components as nutraceuticals: review. Crit Rev Food Sci Nutr 45:645–656Google Scholar
  87. 87.
    Shinmoto H, Dosako S, Nakajima I (1992) Anti-oxidant activity of bovine lactoferrin on iron/ascorbate induced lipid peroxidation. Biosci Biotechnol Biochem 56:2079–2080Google Scholar
  88. 88.
    Simpson HS, Williamson CM, Olivecrona T, Pringle S, Maclean J, Lorimer AR, Bonnefous F, Bogaievsky Y, Packard CJ, Shepherd J (1990) Postprandial lipemia, fenofibrate and coronary artery disease. Atherosclerosis 85:193–202Google Scholar
  89. 89.
    Sirtori CR, Lovati MR, Manzoni C, Castiglioni S, Duranti M, Magni C, Morandi S, D’Agostina A, Arnoldi A (2004) Proteins of white lupin seed, a naturally isoflavone-poor legume, reduce cholesterolemia in rats and increase LDL receptor activity in HepG2 cells. J Nutr 134:18–23Google Scholar
  90. 90.
    Suetsuna K (1998) Isolation and characterization of angiotensin I-converting enzyme inhibitor dipeptides derived from Allium sativum L (garlic). J Nutr Biochem 9:415–419Google Scholar
  91. 91.
    Sutas Y, Soppi E, Korhonen H, Syvaoja EL, Saxelin M, Rokka T, Isolauri E (1996) Suppression of lymphocyte proliferation in vitro by bovine caseins hydrolyzed with Lactobacillus casei GG-derived enzymes. J Allergy Clin Immunol 98:216–224Google Scholar
  92. 92.
    Svensson M, Hakansson A, Mossberg AK, Linse S, Svanborg C (2000) Conversion of alpha-lactalbumin to a protein inducing apoptosis. Proc Natl Acad Sci USA 97:4221–4226Google Scholar
  93. 93.
    Takahashi M, Moriguchi S, Yoshikawa M, Sasaki R (1994) Isolation and characterization of oryzatensin: a novel bioactive peptide with ileum-contracting and immunomodulating activities derived from rice albumin. Biochem Mol Biol Int 33:1151–1158Google Scholar
  94. 94.
    Tani H, Ohishi H, Watanabe K (1994) Purification and characterization of proteinous inhibitor of lipase from wheat flour. J Agric Food Chem 42:2382–2385Google Scholar
  95. 95.
    Toba Y, Takada Y, Matsuoka Y, Morita Y, Motouri M, Hirai T, Suguri T, Aoe S, Kawakami H, Kumegawa M, Takeuchi A, Itabashi A (2001) Milk basic protein promotes bone formation and suppresses bone resorption in healthy adult men. Biosci Biotechnol Biochem 65:1353–1357Google Scholar
  96. 96.
    Toba Y, Takada Y, Yamamura J, Tanaka M, Matsuoka Y, Kawakami H, Itabashi A, Aoe S, Kumegawa M (2000) Milk basic protein: a novel protective function of milk against osteoporosis. Bone 27:403–408Google Scholar
  97. 97.
    Tomita M, Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K (1991) Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J Dairy Sci 74:4137–4142CrossRefGoogle Scholar
  98. 98.
    Trompette A, Claustre J, Caillon F, Jourdan G, Chayvialle JA, Plaisancie P (2003) Milk bioactive peptides and beta-casomorphins induce mucus release in rat jejunum. J Nutr 133:3499–3503Google Scholar
  99. 99.
    Tsujita T, Matsuura Y, Okuda H (1996) Studies on the inhibition of pancreatic and carboxylester lipases by protamine. J Lipid Res 37:1481–1487Google Scholar
  100. 100.
    Tsutsumi K, Kawauchi Y, Kondo Y, Inoue Y, Koshitani O, Kohri H (2000) Water extract of defatted rice bran suppresses visceral fat accumulation in rats. J Agric Food Chem 48:1653–1656Google Scholar
  101. 101.
    Uenishi K, Ishida H, Toba Y, Aoe S, Itabashi A, Takada Y (2007) Milk basic protein increases bone mineral density and improves bone metabolism in healthy young women. Osteoporos Int 18:385–390Google Scholar
  102. 102.
    Weinberg ED (1996) The role of iron in cancer. Eur J Cancer Prev 5:19–36Google Scholar
  103. 103.
    Wergedahl H, Liaset B, Gudbrandsen OA, Lied E, Espe M, Muna Z, Mork S, Berge RK (2004) Fish protein hydrolysate reduces plasma total cholesterol, increases the proportion of HDL cholesterol, and lowers acyl-CoA:cholesterol acyltransferase activity in liver of Zucker rats. J Nutr 134:1320–1327Google Scholar
  104. 104.
    Werner GH, Floc’h F, Migliore-Samour D, Jolles P (1986) Immunomodulating peptides. Experientia 42:521–531Google Scholar
  105. 105.
    Wong CW, Seow HF, Husband AJ, Regester GO, Watson DL (1997) Effects of purified bovine whey factors on cellular immune functions in ruminants. Vet Immunol Immunopathol 56:85–96Google Scholar
  106. 106.
    Wong CW, Seow HF, Liu AH, Husband AJ, Smithers GW, Watson DL (1996) Modulation of immune responses by bovine beta-casein. Immunol Cell Biol 74:323–329Google Scholar
  107. 107.
    Yamamoto N (1997) Antihypertensive peptides derived from food proteins. Biopolymers 43:129–134Google Scholar
  108. 108.
    Yamamoto N, Akino A, Takano T (1994) Antihypertensive effect of the peptides derived from casein by an extracellular proteinase from Lactobacillus helveticus CP790. J Dairy Sci 77:917–922CrossRefGoogle Scholar
  109. 109.
    Yano S, Suzuki K, Funatsu G (1996) Isolation from alpha-zein of thermolysin peptides with angiotensin I-converting enzyme inhibitory activity. Biosci Biotechnol Biochem 60:661–663CrossRefGoogle Scholar
  110. 110.
    Yoshikawa M, Fujita H, Matoba N, Takenaka Y, Yamamoto T, Yamauchi R, Tsuruki H, Takahata K (2000) Bioactive peptides derived from food proteins preventing lifestyle-related diseases. Biofactors 12:143–146Google Scholar
  111. 111.
    Zucht HD, Raida M, Adermann K, Magert HJ, Forssmann WG (1995) Casocidin-I: a casein-alpha s2 derived peptide exhibits antibacterial activity. FEBS Lett 372:185–188Google Scholar

Copyright information

© Spinger 2008

Authors and Affiliations

  • Niels Peter Möller
    • 1
    • 2
  • Katharina Elisabeth Scholz-Ahrens
    • 2
  • Nils Roos
    • 2
  • Jürgen Schrezenmeir
    • 2
    Email author
  1. 1.Skretting Aquaculture Research CentreStavangerNorway
  2. 2.Max Rubner-Institute, Federal Research Institute for Nutrition and Food (location Kiel)Institute for Physiology and Biochemistry of NutritionKielGermany

Personalised recommendations