European Journal of Nutrition

, Volume 46, Issue 8, pp 453–459 | Cite as

Both aluminum and polyphenols in green tea decoction (Camellia sinensis) affect iron status and hematological parameters in rats

  • Neila Marouani
  • Adel Chahed
  • Abderrazek Hédhili
  • Mohamed Hédi Hamdaoui



Green tea leaves naturally contain high levels of polyphenols and aluminum (Al). Polyphenols in green tea decoction are considered to be one of the major factors responsible of low iron status. However, the effects of Al from green tea decoction on iron status and hematological parameters remained unclear.

Aim of the study

The objective was to investigate the Al absorption from green tea decoction and studied its influence on iron status and hematological parameters in rats.


During the experiment period, rats were given the experimental diet + a simple dose of Al sulfate with or without graded doses of green tea decoction (25, 50 and 100 g/l). The Al absorption was evaluated in the serum; however, iron status was evaluated by the iron concentration in the liver, kidney, spleen and femur. In addition, the hemoglobin and hematocrit were evaluated.


Our results showed that the serum Al significantly increased between 61.5 and 342%, as tea doses-dependant. The Al sulfate significantly decreased the reserve of iron in all studied organs between 21.7 and 17% (P < 0.05). In groups receiving green tea decoction alone or Al + graded doses of tea, the reserve of iron significantly decreased in all studied organs between 59.4 and 18.5% (P < 0.01). Al alone or associated with drinking doses of tea significantly decreased hemoglobin concentration between 23.6 and 9% (P < 0.05) and hematocrit between 12.7 and 7% (P < 0.01).


Our data showed that Al from green tea decoction was more absorbed in the serum than Al sulfate. Al absorption was associated with low iron status and reduction of hemoglobin and hematocrit. Considering that Al competes with iron in different stage of erythropoiesis including transferrin binding, so we could assume that the negative effect of tea on iron status arises not only from polyphenols iron complexes but also from Al released in tea decoction.

Key words

green tea decoction Al absorption iron status hematological parameters 



This study was supported by the Ministère de la Recherche Scientifique, de la Technologie et du développement des compétences en Tunisie.


  1. 1.
    Abdulla M, Svensson S, Haeger-Aronsen B (1979) Antagonistic effects of zinc and aluminum on lead inhibition of ô-aminolevulinic acid dehydratase. Arch Environ Health 34:464–469Google Scholar
  2. 2.
    Adrian J, Rabache M, Frangne R (1981) Techniques d’analyse nutritionnelle. In: Association pour la Promotion Industrie Agriculture (ed) Textbook of Techniques d’analyse et de contrôle dans les industries agro-alimentaires. 2nd edn. Technique et Documentation, Paris, pp 393–420Google Scholar
  3. 3.
    Crosby WH, Furth FW (1954) Standardized method for clinical hemoglobinometry. US Armed Forces Med J 5:693–703Google Scholar
  4. 4.
    Disler PB, Lynch SR, Torrance JD, Sayers MH, Bothwell TH, Charlton RW (1975) The mechanism of the inhibition of iron absorption by tea. S Afr J Med Sci 40:109–116Google Scholar
  5. 5.
    Drewitt PN, Butterworth KR, Springall CD, Moorhouse SR (1993) Plasma levels of aluminum after tea ingestion in healthy volunteers. Food Chem Toxicol 31:19–23CrossRefGoogle Scholar
  6. 6.
    Erdemoglu SB, Pyrzyniska K, Güçer S (2000) Speciation of aluminum in tea infusion by ion-exchange resins and flame AAS detection. Anal Chim Acta 411:81–89CrossRefGoogle Scholar
  7. 7.
    Erdemoglu SB, Türkdemir H, Güçer S (2000) Determination of total and fluoride bound aluminum in tea infusions by ion selective electrode and flame atomic absorption spectrometry. Anal Lett 33:1513–1529Google Scholar
  8. 8.
    Fairweather-Tait SJ, Piper Z, Fatemi SJ, Moore GR (1991) The effect of tea on iron and aluminum metabolism in the rat. Br J Nutr 65:61–68CrossRefGoogle Scholar
  9. 9.
    Farina M, Lara FS, Brandão R, Jacques R, Rocha JBT (2002) Effects of aluminum sulfate on erythropoiesis in rats. Toxicol Lett 132:131–139CrossRefGoogle Scholar
  10. 10.
    Farina M, Rotta LN, Soares FAA, Jardim F, Jacques R, Souza DO, Rocha JBT (2005) Hematological changes in rats chronically exposed to oral aluminum. Toxicology 209:29–37CrossRefGoogle Scholar
  11. 11.
    Fernandez-Caceres PL, Martin MJ, Pablos F, Gonzalez AG (2001) Differentiation of tea (Camellia sinensis) varieties and their geographical origin according to their metal content. J Agric Food Chem 49:4775–4779CrossRefGoogle Scholar
  12. 12.
    Fimreite N, Hansen O, Pettersen HC (1997) Aluminum concentrations in selected foods prepared in aluminum cookware, and its implications for human health. Bull Environ Contam Toxicol 58:1–7CrossRefGoogle Scholar
  13. 13.
    Finnegan MM, Rettig SJ, Orvig C (1986) Neutral water-soluble aluminum complex of neurological interest. J Am Chem Soc 108:5033–5035CrossRefGoogle Scholar
  14. 14.
    Flaten TP (2002) Aluminum in tea—concentrations, speciation and bioavailability. Coord Chem Rev 228:385–395CrossRefGoogle Scholar
  15. 15.
    French P, Gardner MJ, Gunn AM (1989) Dietary aluminum and Alzheimer’s disease. Food Chem Toxicol 27:495–496CrossRefGoogle Scholar
  16. 16.
    Fujii W, Kusumoto A, Nakada T, Suwa Y (2002) Gastrointestinal absorption of aluminum from teas in rats. J Food Sci 67:2552–2554CrossRefGoogle Scholar
  17. 17.
    Ganchev T, Dyankov E, Zacharieva R, Pachalieva I, Velikova M, Kavaldjieva B (1998) Influence of aluminum on erythropoiesis, iron metabolism and some functional characteristics of erythrocytes in rats. Acta Physiol Pharmacol Bulg 23:27–31Google Scholar
  18. 18.
    Gardner MJ, Gunn AM (1995) Speciation and bioavailability of aluminum in drinking water. Chem Spec Bioavailab 7:9–16Google Scholar
  19. 19.
    Gourier-Fréry C, Fréry N (2004) Aluminium. EMC Toxicol Pathol 1:79–95CrossRefGoogle Scholar
  20. 20.
    Hamdaoui MH, Chahed A, Ellouze-Chabchoub S, Marouani N, Ben Abid Z, Hédhili A (2005) Effect of green tea decoction on long-term iron, zinc and selenium status of rats. Ann Nutr Metab 49:118–124CrossRefGoogle Scholar
  21. 21.
    Han J, Han J, Dunn MA (2000) Effect of dietary aluminum on tissue non heme iron and ferritine levels in the chick. Toxicology 142:97–109CrossRefGoogle Scholar
  22. 22.
    Harbowy ME, Balentine DA (1997) Tea chemistry. Crit Rev Plant Sci 16:415–480CrossRefGoogle Scholar
  23. 23.
    Hurrell RF (1997) Bioavailability of iron. Eur J Clin Nutr 51:4–8Google Scholar
  24. 24.
    Kaiser L, Schwartz K, Burnatowska-Hledin MA, Mayor G (1984) Microcytic anemia secondary to intraperitoneal aluminum in normal and uremic rats. Kidney Int 26:269–274CrossRefGoogle Scholar
  25. 25.
    Lide DR (1993) CRC handbook of chemistry and physics. CRC, Boca RatonGoogle Scholar
  26. 26.
    Mahieu S, Del Carmen Contini M, Gonzalez M, Millen N, Elias MM (2000) Aluminum toxicity. Hematological effects. Toxicol Lett 111:235–242CrossRefGoogle Scholar
  27. 27.
    Marco A, Arruda Z, José Quintela Ma, Gallego M, Valcárcel M (1994) Direct analysis of milk for aluminum using electrothermal atomic absorption spectrometry. Analyst 119:1695–1699CrossRefGoogle Scholar
  28. 28.
    Moshtaghi AA, Bazrafshan MR (1992) Comparative binding study of aluminum and chromium to human transferrin: effect of iron. Biol Trace Elem Res 32:39–45Google Scholar
  29. 29.
    Pennington JAT, Schoen SA (1995) Estimates of dietary exposure to aluminum. Food Addit Contam 12:119–128Google Scholar
  30. 30.
    Powell JJ, Greenfield SM, Parkes HG, Nicholson JK, Thompson RP (1993) Gastro-intestinal availability of aluminum from tea. Food Chem Toxicol 31:449–454CrossRefGoogle Scholar
  31. 31.
    Priest ND, Talbot RJ, Austin JG, Day JP, King SJ, Fifield K, Cresswell RG (1996) The bioavailability of 26Al-labelled aluminum citrate and aluminum hydroxide in volunteers. Biometals 9:221–228CrossRefGoogle Scholar
  32. 32.
    Reddy MB, Cook JD (1994) Absorption of nonheme-iron in ascorbic acid-deficient rats. J Nutr 124:882–887Google Scholar
  33. 33.
    Reddy MB, Cook JD (1991) Assessment of dietary determinants of nonheme-iron absorption in human and rats. Am J Clin Nutr 21:1175–1183Google Scholar
  34. 34.
    Sassa S, Fujita H, Kappas A (1989) Genetic and chemical influences on heme biosynthesis. Highlights Mod Biochem 1:329–338Google Scholar
  35. 35.
    Schroeder TM, Caspers ML (1996) Kinetics of aluminum induced inhibition of ô-aminolevulinic acid dehydratase in vitro. Biochem Pharmacol 5:927–931CrossRefGoogle Scholar
  36. 36.
    Silbernagl S, Despopoulos A (1992) Métabolisme du fer. Atlas de Poche de Physiologie, 2nd edn., ParisGoogle Scholar
  37. 37.
    Schümann K, Friebel P, Schmolke G, Elsenhans B (1996) State of iron repletion and cadmium tissue accumulation as a function of growth in young rats after oral cadmium exposure. Arch Environ Contam Toxicol 31:483–487CrossRefGoogle Scholar
  38. 38.
    Thannoun AM, Mahoney AW, Hendricks DG, Zang D (1987) Effect of meat-bread mixtures on bioavailability of total dietary iron for anemic rats. Cereal Chem 64:399–403Google Scholar
  39. 39.
    Van Ginkel MF, van der Voet GB, D’Haese PC, de Broe ME, de Wolff FA (1993) Effect of citric acid and maltol on the accumulation in rat brain and bone. J Lab Clin Med 121:453–460Google Scholar
  40. 40.
    Wiseman SA, Balentine DA, Frei B, Malvy D, Remesy C (2000) Les antioxydants du thé. Cah Nutr Diét 35:23–33Google Scholar
  41. 41.
    Yang CS, Landau JM (2000) Effect of tea consumption on nutrition and health. J Nutr 130:2409–2412Google Scholar

Copyright information

© Spinger 2007

Authors and Affiliations

  • Neila Marouani
    • 1
  • Adel Chahed
    • 1
  • Abderrazek Hédhili
    • 2
  • Mohamed Hédi Hamdaoui
    • 1
  1. 1.Unité de Recherche sur les Composés AntioxydantsStress Oxydant, Eléments Traces et Maladies Métaboliques. Ecole Supérieure des Sciences et Techniques de la Santé de TunisTunisTunisia
  2. 2.Centre d’Aide Médicale Urgente et de Reanimation-TunisTunisTunisia

Personalised recommendations