European Journal of Nutrition

, Volume 45, Issue 5, pp 251–258

Defatted milled grape seed protects adriamycin-treated hepatocytes against oxidative damage

  • Victoria Valls-Belles
  • Mari Carmen Torres
  • Pilar Muñiz
  • Sagrario Beltran
  • Jesús Roman Martinez-Álvarez
  • Pilar Codoñer-Franch
ORIGINAL CONTRIBUTION

Abstract

Defatted milled grape seed (DMGS) is a wine by-product obtained from the oil extraction of the grape seed that contains different types of phenolic compounds. The present study was designed to evaluate the possible protective effect of DMGS on toxicity induced by adriamycin (ADR) in isolated rat hepatocytes. The study was carried out by examining the results of lactate dehydrogenase (LDH) release to estimate cytotoxicity; the thiobarbituric acid reactant substances (TBARS) and carbonyl group levels were measured as biomarkers of oxidative stress and ATP and GSH levels as estimation of intracellular effect. The results showed that DMGS extract protects the cellular membrane from oxidative damage and consequently prevents protein and lipid oxidation. The levels of ATP and GSH changes for the ADR toxicity were restored to control value in the presence of DMGS extract. The experimental results suggest that this wine by-product may be used to decrease oxidative stress.

Keywords

DMGS extract phenolics adriamycin oxidative damage 

Abbreviations

DMGS

defatted milled grape seed

LDH

lactate dehydrogenase

TBARS

thiobarbituric acid reactant substances

GSH

glutathione

ADR

adriamycin

References

  1. 1.
    Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Claredon Press, OxfordGoogle Scholar
  2. 2.
    Halliwell B (1996) Oxidative stress, nutrition and health. Experimental strategies for optimisation of nutritional antioxidant intake in humans. Free Rad Res 25:57–74Google Scholar
  3. 3.
    Hill MJ (1997) Nutrition and human cancer. Ann NY Acad Sci 833:68–78Google Scholar
  4. 4.
    Dragsted LO (1998) Natural antioxidants in chemoprevention. Arch Toxicol Suppl 20:209–226Google Scholar
  5. 5.
    Wargovich MJ (1999) Nutrition and cancer: the herbal revolution. Curr Opin Clin Nutr Metab Care 2:421–424CrossRefGoogle Scholar
  6. 6.
    Shrikhande AJ (2000) Wine by-products with health benefits. Food Res Internat 33:469–474CrossRefGoogle Scholar
  7. 7.
    Vitaglione P, Morisco F, Caporaso N, Fogliano V (2004) Dietary antioxidant compounds and liver health. Crit Rev Food Sci Nutr 44:575–586Google Scholar
  8. 8.
    Shi J, Yu J, Pohorly JE, Kakuda Y (2003) Polyphenolics in grape seeds. Biochemistry and Functionality. J Med Food 6(4):291–299CrossRefGoogle Scholar
  9. 9.
    Cook NC, Sammam S (1996) Flavonoids-chemistry, metabolism cardioprotective effects and dietary sources. J Nutr Biochem 7:66–76CrossRefGoogle Scholar
  10. 10.
    Sharma G, Tyagi AK, Singh RP, Chan DD, Agarwal R (2004) Synergistic anti-cancer effects of grape seed extract and conventional cytotoxic agent doxorubicin against human breast carcinoma cells. Breast Cancer Res Treat 85:1–12CrossRefGoogle Scholar
  11. 11.
    Silva RC, Rigaud J, Cheynier V, Chemina A (1991) Procyanidin dimers and trimers from grape seeds. Phytochemistry 30:1259–1264CrossRefGoogle Scholar
  12. 12.
    Bagchi D, Bagchi M, Stohs SJ, Das DK, Ray CA, Kuszynski SS, Joshi HG (2000) Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology 148:187–197CrossRefGoogle Scholar
  13. 13.
    Rice-Evans CA, Packer L (1997) Flavonoids in health and diseases. Marcel Decker, New YorkGoogle Scholar
  14. 14.
    Prieur C, Rigaud J, Cheynier V (1994) Oligomeric and polymeric procyanidins from grape seeds. Phytochemistry 36:781–784CrossRefGoogle Scholar
  15. 15.
    Stahl W, van den Berg H, Arthur H, Bast A, Dainty J, Faulks RM (2002) Bioavailability and metabolism. Mol Aspects Med 23:39–100CrossRefGoogle Scholar
  16. 16.
    Hortobagyi G (1997) Anthracyclines in the treatment of cancer. Drugs 54:1–7Google Scholar
  17. 17.
    Gewirt AD (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57:727–741CrossRefGoogle Scholar
  18. 18.
    Doroshow JH, Davies KJA (1986) Redox cycling of anthracyclin by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide and hydroxyl radical. J Biol Chem 261:3068–3074Google Scholar
  19. 19.
    Valls V, Castellucio C, Fato E, Genova ML, Bovina C, Sáez GT, Marchitti M, Parenti-Castelli G, Lenaz G (1994) Protective effect of exogenous coenzyme Q against damage liver. Biochem Mol Biol Inter 33(4):633–642Google Scholar
  20. 20.
    Lee V, Randhawa AK, Singal PK (1991) Adriamycin-induced myocardial dysfunction in vitro is mediated by free radicals. Am J Physiol 261:989–995Google Scholar
  21. 21.
    van Acker FAA, Hulshof JW, Haenen GRM, Menge WMP, van der Vigh WJF, Bast A (2001) New synthetic flavonoids as potent protectors against doxorubicin-induced cardiotoxicity. Free Radic Biol Med 31(1):31–37CrossRefGoogle Scholar
  22. 22.
    Tyagi AK, Agarwal C, Chan DC, Agarwal R (2004) Synergistic anti-cancer effects of silibinin with conventional cytotoxic agents doxorubicin, cisplatin and carboplatin against human breast carcinoma MCF-7 and MDA-MB468 cells. Oncol Rep 11(2):493–499Google Scholar
  23. 23.
    Valls V, Torres MC, Muñiz P, Boix L, Gonzalez-SanJose ML, Codoñer-Franch P (2004) The protective effects of melanoidins in adriamycin-induced oxidative stress in isolated rat hepatocytes. J Sci Food Agric 84:1701–1707CrossRefGoogle Scholar
  24. 24.
    Remy M (1999) Les tannins du vin rouge: characterisation de structures natives et derivées. PhD Thesis, Institut National Agronomique, Paris-Grignon, FranceGoogle Scholar
  25. 25.
    Perez-Magariño S, Revilla I, González-SanJosé ML, Beltrán S (1999) Various applications of liquid chromatography—mass spectrometry to the analysis of phenolic compounds. J Chromatogr 847:75–81CrossRefGoogle Scholar
  26. 26.
    Miller NJ, Rice-Evans CA (1997) Factors influencing the antioxidant activity determined by the ABTS radical cation assay. Free Radic Res 26:195–199CrossRefGoogle Scholar
  27. 27.
    Berry MN, Friend DJ (1969) High yield preparation of isolated rat liver parenchymal cells. J Cell Biol 43:506–520CrossRefGoogle Scholar
  28. 28.
    Bergmeyer H, Bernt T (1974) Lactate dehydrogenase, assay with pyruvate and NADH. In: Bergmeyer (ed) Methods of enzymatic analysis, pp574–579Google Scholar
  29. 29.
    Stacey N, Priestly BG (1978) Lipid peroxidation in isolated rat hepatocytes: relationship to toxicity of diethyl maleate. Tox Appl Pharmacol 45:41–48CrossRefGoogle Scholar
  30. 30.
    Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Oxygen radicals in biological systems. Part B: Oxygen radicals and antioxidants. In: Paker L, Glazer A (eds) Academic Press Inc, London, Meth Enzymol 186:466–478Google Scholar
  31. 31.
    Tian L, Cai Q, Wei H (1998) Alterations of antioxidant enzymes and oxidative damage to macromolecules in different organs of rats during aging. Free Radic Biol Med 24(9):1477–1484CrossRefGoogle Scholar
  32. 32.
    Lamprecht W, Trautschold I (1974) Adenosin triphosphate (ATP) determination with hexoquinase and glucose-6-phosphate dehydrogenase. In: Bergmeyer (ed) Methods of enzymatic analysis, pp2101–2110Google Scholar
  33. 33.
    Brigelius R, Muckel C, Ackerboom TPM, Sies H (1983) Identification and quantification of glutathione in hepatic protein mixed disulphides and its relation to glutathione disulphide. Biochem Pharmacol 32:2529–2534CrossRefGoogle Scholar
  34. 34.
    Lowry OH, Rosebrough NJ, Farr AL, Ronald RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  35. 35.
    Markwell MA, Haas SM, Bieber LL, Tolbert NE (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87(1):206–210CrossRefGoogle Scholar
  36. 36.
    Waterhouse LA (2002) Wine phenolics. Ann NY Acad Sci 957:21–36Google Scholar
  37. 37.
    Valls-Belles V, Muñiz P, Gonzalez P, Gonzalez-SanJose ML, Beltrán S (2002) Mechanism of protection by epicatechin against tert-butylhydroperoxide induced oxidative cell injury in isolated rat hepatocytes and calf thymus DNA. Process Biochem 37(6):659–664CrossRefGoogle Scholar
  38. 38.
    Singletary KW, Meline B (2001) Effect of grape seed proanthocyanidins on colon aberrant crypts and breast tumours in a rat dual-organ tumour model. Nutr Cancer 39:252–258CrossRefGoogle Scholar
  39. 39.
    Murga R, Ruiz R, Beltran S, Cabezas J (2000) Extraction of natural complex phenols and tannins from grape seeds by using supercritical mixtures of carbon dioxide and alcohol. J Agric Food Chem 48:3408–3412CrossRefGoogle Scholar
  40. 40.
    Garcia J, Nicodemus N, Carbaño R, De Blas JC (2002) Effect of inclusion of defatted grape seed meal in the diet on digestion and performance of growing rabbits. J Anim Sci 80:162–170Google Scholar
  41. 41.
    Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56(11):317–333CrossRefGoogle Scholar
  42. 42.
    Martínez-Flórez S, González-Gallego J, Culebras JM, Tuñón MJ (2002) Flavonoids: properties and antioxidizing action. Nutr Hosp XVII(6):271–278Google Scholar
  43. 43.
    Rivero D, Perez-Magarino S, Gonzalez-Sanjose ML, Valls-Belles V, Codoner P, Muniz P (2005) Inhibition of induced DNA oxidative damage by beers: correlation with the content of polyphenols and melanoidins. J Agric Food Chem 53(9):3637–3642CrossRefGoogle Scholar
  44. 44.
    Sadzuka Y, Sugiyama T, Shimoi K, Kinae N, Hirota S (1997) Protective effect of flavonoids on doxorubicin-induced cardiotoxicity. Toxicol Lett 92:1–7CrossRefGoogle Scholar
  45. 45.
    Barogi S, Baracca A, Cavazzoni M, Parenti-Castelli G, Lenaz G (2000) Effect of the oxidative stress induced by adriamycin on rat hepatocytes bioenergetics during ageing. Mech Ageing Dev 24:113(1):1–21CrossRefGoogle Scholar
  46. 46.
    Comporti M (1985) Lipid peroxidation and cellular damage in toxic liver injury. Lab Invest 503:599–623Google Scholar
  47. 47.
    Griffiths HR, Moller L, Bartosz G, Bast A, Bertoni-Freddari C, Collins A, Cooke M, Coolen S, Haenen G, Hoberg AM, Loft S, Lunec J, Olinski R, Parry J, Pompella A, Poulsen H, Verhagen H, Astley SB (2002) Biomarkers. Mol Aspects Med 23(1–3):101–208CrossRefGoogle Scholar
  48. 48.
    Zwart L, Meerman JH, Commandeur JNM, Vermeulen NPE (1999) Biomarkers of free radical damage. Applications in experimental animals and in humans. Free Radic Biol Med 26(1/2):202–226Google Scholar
  49. 49.
    Eguchi Y, Shimizu S, Tsujimoto Y (1997) Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 57:1835–1840Google Scholar
  50. 50.
    Jackson MJ, Papa S, Bolanos J, Bruckdorfer R, Carlsen H, Elliott RM, Flier J, Griffiths HR, Heales S, Holst B, Lorusso M, Luna E, Moskaug J, Moser U, Di Paola M, Polidori MC, Signorile A, Stahl W, Vina-Ribes J, Astley SB (2002) Antioxidants, reactive oxygen and nitrogen species, gene induction and mitochondrial function. Mol Aspects Med 23(1–3):209–285CrossRefGoogle Scholar
  51. 51.
    Bagchi D, Sen CK, Ray SD, Das DK, Bagchi M, Preuss HG, Vinson JA (2003) Molecular mechanisms of cardioprotection by a novel grape seed proanthocyanidin extract. Mut Res 524:87–97Google Scholar
  52. 52.
    Cao Y, Kennedy R, Klimberg VS (1999) Glutamine protects against doxorubicin-induced cardiotoxicity. J Surg Res 85:178–182CrossRefGoogle Scholar
  53. 53.
    Sugiyama T, Sadzuka Y (2004) Theanine, a specific glutamate derivative in green tea, reduces the adverse reactions of doxorubicin by changing the glutathione level. Cancer Lett 30(2):177–184CrossRefGoogle Scholar
  54. 54.
    Perez D, Strobel P, Foncea R, Diez S, Vazquez L, Urquiaga I, Castill O, Suevas A, Martín A, Leighton F (2002) Wine, diet, antioxidant defences and oxidative damage. Ann NY Acad Sci 957:136–145CrossRefGoogle Scholar
  55. 55.
    Yang CS, Landau JM, Huang MT, Newmark HL (2001) Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu Rev Nutr 21:381–406CrossRefGoogle Scholar

Copyright information

© Steinkopff Verlag Darmstadt 2006

Authors and Affiliations

  • Victoria Valls-Belles
    • 1
  • Mari Carmen Torres
    • 1
  • Pilar Muñiz
    • 2
    • 3
  • Sagrario Beltran
    • 2
  • Jesús Roman Martinez-Álvarez
    • 4
  • Pilar Codoñer-Franch
    • 1
  1. 1.Depto. de Pediatría, Ginecología y Obstetricia Facultad de MedicinaUniversidad de ValenciaValenciaSpain
  2. 2.Depto. de Biotecnología y Ciencia de los AlimentosUniversidad de BurgosBurgosSpain
  3. 3.Área Bioquímica y Biología Molecular Facultad de CienciasUniversidad de BurgosBurgosSpain
  4. 4.Escuela de EnfermeríaUniversidad ComplutenseMadridSpain

Personalised recommendations