European Journal of Nutrition

, Volume 44, Issue 5, pp 293–302 | Cite as

Stimulatory effect of inulin on intestinal absorption of calcium and magnesium in rats is modulated by dietary calcium intakes

Short– and long–term balance studies
  • C. Coudray
  • C. Feillet-Coudray
  • J. C. Tressol
  • E. Gueux
  • S. Thien
  • L. Jaffrelo
  • A. Mazur
  • Y. Rayssiguier
ORIGINAL CONTRIBUTION

Summary

Previous studies have shown that short–term intake of fermentable oligosaccharides (OS), including inulin, can increase mineral intestinal absorption in humans and animals. While the stimulatory effect of these substances on intestinal magnesium (Mg) absorption is generally high and consistent, their effect on calcium (Ca) seems to depend on experimental conditions, particularly the duration of fermentable OS intake. The aim of this study was to determine how the short– and long–term dietary Ca intake may modulate the effect of inulin on Ca absorption. Sixty male Wistar rats, weighing 275 g, were randomized into two groups to receive or not 10% of inulin in their diet. Each group was divided into three sub–groups to receive one of the following dietary Ca levels 0.25%, 0.50% and 0.75% in their food. The animals were fed fresh food and water ad libitum for 40 days. Apparent intestinal absorptions of Ca and Mg were determined at D13 and D36 of the experiment. As expected, inulin feeding increased Ca and Mg absorption in both periods at all dietary Ca levels. However, the effect of inulin on intestinal Ca absorption was dependent on dietary Ca levels and on experiment duration. In the short–term period, the inulin effect was prominent in the groups receiving high or low Ca levels, but in long–term period inulin improved intestinal Ca absorption much more in the group receiving the low Ca level. In addition, efficiency of intestinal absorption of Ca and Mg (%) was negatively affected by Ca intake levels. These results show that the beneficial effect of inulin on intestinal Ca absorption may be more marked in cases where the Ca intake is low or where the organism’s Ca requirement is high. Further studies are required to confirm these results in humans.

Key words

inulin intestinal absorption calcium magnesium fermentation rat 

Abbreviations

Ca

calcium

Mg

Magnesium

OS

oligosaccharides

SCFA

Short–chain fatty acid

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jackson KG, Taylor GR, Clohessy AM, Williams CM (1999) The effect of the daily intake of inulin on fasting lipid, insulin and glucose concentrations in middle-aged men and women. Br J Nutr 82(1):23–30PubMedGoogle Scholar
  2. 2.
    Kaur N, Gupta AK (2002) Applications of inulin and oligofructose in health and nutrition. Review. J Biosci 27(7):703–714PubMedGoogle Scholar
  3. 3.
    Gibson GR, Beatty ER, Wang X, Cummings JH (1995) Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108(4):975–982PubMedGoogle Scholar
  4. 4.
    Delzenne N, Aertssens J, Verplaetse H, Roccaro M, Roberfroid M (1995) Effect of fermentable fructo-oligosaccharides on mineral, nitrogen and energy digestive balance in the rat. Life Sci 57(17):1579–1587CrossRefPubMedGoogle Scholar
  5. 5.
    Ohta A, Ohtsuki M, Baba S, Adachi T, Sakata T, Sakaguchi EI (1995) Calcium and magnesium absorption from the colon and rectum are increased in rats fed fructooligosaccharides. J Nutr 125(9):2417–2424PubMedGoogle Scholar
  6. 6.
    Younes H, Demigné C, Rémésy C (1996) Acidic fermentation in the caecum increases absorption of calcium and magnesium in the large intestine of the rat. Br J Nutr 75(2):301–314CrossRefPubMedGoogle Scholar
  7. 7.
    Levrat MA, Rémésy C, Demigné C (1991) High propionic acid fermentations and mineral accumulation in the cecum of rats adapted to different levels of inulin. J Nutr 121(11):1730–1737PubMedGoogle Scholar
  8. 8.
    Lutz T, Scharrer E (1991) Effect of short-chain fatty acids on calcium absorption by the rat colon. Exp Physiol 76(4):615–618PubMedGoogle Scholar
  9. 9.
    Trinidad TP, Wolever TM, Thompson LU (1999) Effects of calcium concentration, acetate,and propionate on calcium absorption in the human distal colon. Nutrition 15(7–8):529–533CrossRefPubMedGoogle Scholar
  10. 10.
    Topping DL, Clifton PM (2001) Shortchain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Review. Physiol Rev 81(3):1031–1064PubMedGoogle Scholar
  11. 11.
    Remesy C, Levrat MA, Gamet L, Demigne C (1993) Cecal fermentations in rats fed oligosaccharides (inulin) are modulated by dietary calcium level. Am J Physiol 264(5 Pt 1):G855–G862 PubMedGoogle Scholar
  12. 12.
    Coudray C, Tressol JC, Gueux E, Rayssiguier Y (2003) Effects of inulintype fructans of different chain length and type of branching on intestinal absorption and balance of calcium and magnesium in rats. Eur J Nutr 42(2):91–98CrossRefPubMedGoogle Scholar
  13. 13.
    Coudray C, Demigne C, Rayssiguier Y (2003) Effects of dietary fibers on magnesium absorption in animals and humans. Review. J Nutr 133(1):1–4PubMedGoogle Scholar
  14. 14.
    Demigne C, Remesy C, Rayssiguier Y (1980) Effect of fermentable carbohydrates on volatile fatty acids, ammonia and mineral absorption in the rat caecum. Reprod Nutr Dev 20(4B):1351–1359PubMedGoogle Scholar
  15. 15.
    Coudray C, Bellanger J, Castiglia-Delavaud C, Rémésy C, Vermorel M, Rayssiguier Y (1997) Effect of soluble and insoluble dietary fiber supplementation in healthy young men: apparent absorption and balance of calcium, magnesium, iron and zinc. Eur J Clin Nutr 51(6):375–380PubMedGoogle Scholar
  16. 16.
    Lopez HW,Coudray C, Levrat-Verny M, Feillet-Coudray C, Demigne C, Remesy C (2000) Fructooligosaccharides enhance mineral apparent absorption and counteract the deleterious effects of phytic acid on mineral homeostasis in rats. J Nutr Biochem 11(10):500–508CrossRefPubMedGoogle Scholar
  17. 17.
    Younes H, Coudray C, Bellanger J, Demigne C, Rayssiguier Y, Remesy C (2001) Effects of two fermentable carbohydrates (inulin and resistant starch) and their combination on calcium and magnesium balance in rats. Br J Nutr 86(4):479–485PubMedGoogle Scholar
  18. 18.
    Scholz-Ahrens KE, Schaafsma G, van den Heuvel EG, Schrezenmeir J (2001) Effects of prebiotics on mineral metabolism. Review. Am J Clin Nutr 73(2 Suppl):459S–464SPubMedGoogle Scholar
  19. 19.
    Cashman K (2003) Prebiotics and calcium bioavailability, Review. Curr Issues Intest Microbiol 4(1):21–32PubMedGoogle Scholar
  20. 20.
    Chonan O, Matsumoto K,Watanuki M (1995) Effect of galactooligosaccharides on calcium absorption and preventing bone loss in ovariectomized rats. Biosci Biotechnol Biochem 59(2): 236–239PubMedGoogle Scholar
  21. 21.
    Ohta A, Ohtsuki M, Baba S, Hirayama M, Adachi T (1998) Comparison of the nutritional effects of fructo-oligosaccharides of different sugar chain length in rats. Nutr Res 18(1):109–120CrossRefGoogle Scholar
  22. 22.
    Ohta A, Motohashi Y, Ohtsuki M, Hirayama M, Adachi T, Sakuma K (1998) Dietary fructooligosaccharides change the concentration of calbindin-D9k differently in the mucosa of the small and large intestine of rats. J Nutr 128(6):934–939PubMedGoogle Scholar
  23. 23.
    Chonan O,Watanuki M (1996) The effect of 6’-galactooligosaccharides on bone mineralization of rats adapted to different levels of dietary calcium. Int J Vitam Nutr Res 66(3):244–249PubMedGoogle Scholar
  24. 24.
    Heaney RP, Weaver CM, Fitzsimmons ML (1990) Influence of calcium load on absorption fraction. J Bone Miner Res 5(11):1135–1138PubMedGoogle Scholar
  25. 25.
    Cashman KD, Flynn A (1996) Effect of dietary calcium intake and meal calcium content on calcium absorption in the rat. Br J Nutr 76(3):463–470CrossRefPubMedGoogle Scholar
  26. 26.
    Miura T, Matsuzaki H, Suzuki K, Goto S (1999) Long-term high intake of calcium reduces magnesium utilisation in rats. Nutr Res 19(9):1363–1369CrossRefGoogle Scholar
  27. 27.
    Tryfonidou MA, van den Broek J, van den Brom WE, Hazewinkel HA (2002) Intestinal calcium absorption in growing dogs is influenced by calcium intake and age but not by growth rate. J Nutr 132(11):3363–3368PubMedGoogle Scholar
  28. 28.
    Ames SK, Gorham BM, Abrams SA (1999) Effects of high compared with low calcium intake on calcium absorption and incorporation of iron by red blood cells in small children. Am J Clin Nutr 70(1):44–48PubMedGoogle Scholar
  29. 29.
    Tahiri M,Tressol JC,Arnaud J, Bornet F, Bouteloup-Demange C,Feillet-Coudray C, Ducros V, Pepin D, Brouns F, Rayssiguier AM, Coudray C (2001) Five-week intake of short-chain fructooligosaccharides increases intestinal absorption and status of magnesium in postmenopausal women. J Bone Miner Res 16(11):2152–2160PubMedGoogle Scholar
  30. 30.
    Coudray C, Bellanger J, Vermorel M, Sinaud S, Wils D, Feillet-Coudray C, Brandolini M, Bouteloup-Demange C, Rayssiguier Y (2003) Two polyol, lowdigestible carbohydrates, improve the apparent absorption of magnesium but not of calcium in healthy young men. J Nutr 133(1):90–93PubMedGoogle Scholar
  31. 31.
    Andon MB, Ilich JZ, Tzagournis MA, Matkovic V (1996) Magnesium balance in adolescent females consuming a lowor high-calcium diet. Am J Clin Nutr 63(6):950–953PubMedGoogle Scholar
  32. 32.
    Yan L, Prentice A, Dibba B, Jarjou LM, Stirling DM, Fairweather-Tait S (1996) The effect of long-term calcium supplementation on indices of iron, zinc and magnesium status in lactating Gambian women. Br J Nutr 76(6):821–831CrossRefPubMedGoogle Scholar
  33. 33.
    Sojka J, Wastney M, Abrams S, Lewis SF, Martin B, Weaver C, Peacock M (1997) Magnesium kinetics in adolescent girls determined using stable isotopes: effects of high and low calcium intake. Am J Physiol 273(2 Pt 2):R710–R715PubMedGoogle Scholar
  34. 34.
    Brink EJ, Beynen AC, Dekker PR, van Beresteijn EC, van der Meer R (1992) Interaction of calcium and phosphate decreases ileal magnesium solubility and apparent magnesium absorption in rats. J Nutr 122(3):580–586PubMedGoogle Scholar

Copyright information

© Steinkopff-Verlag 2004

Authors and Affiliations

  • C. Coudray
    • 1
    • 2
  • C. Feillet-Coudray
    • 1
  • J. C. Tressol
    • 1
  • E. Gueux
    • 1
  • S. Thien
    • 1
  • L. Jaffrelo
    • 1
  • A. Mazur
    • 1
  • Y. Rayssiguier
    • 1
  1. 1.Centre de Recherche en Nutrition Humaine d’Auvergne Unité Maladies Métaboliques et Micronutriments INRA, TheixSt Genès ChampanelleFrance
  2. 2.Unité Maladies Métaboliques et Micronutriments, I. N. R. A.Saint Genès ChampanelleFrance

Personalised recommendations