Zeitschrift für Rheumatologie

, Volume 59, Supplement 2, pp II108–II118 | Cite as

Replacement therapy with DHEA plus corticosteroids in patients with chronic inflammatory diseases - substitutes of adrenal and sex hormones

Article

Summary

A dysfunction of the hypothalamic - pituitary - adrenal (HPA) axis was found in animal models of chronic inflammatory diseases, and the defect was located in more central portions of the HPA axis. This defect of neuroendocrine regulatory mechanisms contributes to the onset of the model disease. Since these first observations in animal models were made, evidence has accumulated that the possible defect in the HPA axis in humans is more distal to the hypothalamus or pituitary gland: In chronic inflammatory diseases, such as rheumatoid arthritis, an alteration of the HPA stress response results in inappropriately low cortisol secretion in relation to adrenocorticotropic hormone (ACTH) secretion. Furthermore, it has recently been shown that the serum levels of another adrenal hormone, dehydroepiandrosterone (DHEA), were significantly lower after ACTH stimulation in patients with rheumatoid arthritis without prior corticosteroids than in healthy controls. These studies clearly indicate that chronic inflammation alters, particularly, the adrenal response. However, at this point, the reason for the specific alteration of adrenal function in relation to pituitary function remains to be determined.

Since one of the down-regulated adrenal hormones, DHEA, is an inhibitor of cytokines due to an inhibition of nuclear factor-kappa B (NF-κB) activation, low levels of this hormone may be deleterious in chronic inflammatory diseases. We have recently demonstrated that DHEA is a potent inhibitor of IL-6, which confirmed an earlier study in mice. Since IL-6 is an important factor for B lymphocyte differentiation, the missing down-regulation of this cytokine, and others such as TNF, may be a significant risk factor in rheumatic diseases. Since in these patients, administration of prednisolone or the chronic inflammatory process itself alters adrenal function, endogenous adrenal hormones in relation to proinflammatory cytokines change. Furthermore, these mechanisms may also lead to shifts in steroidogenesis which have been demonstrated in chronic inflammatory diseases. It was repeatedly demonstrated that the serum level of the sulphated form of DHEA (DHEAS) was significantly lower in patients with chronic inflammatory diseases. Since DHEAS is the pool for peripheral sex steroids, such as testosterone and 17β-estradiol, lack of this hormone leads to a significant sex hormone deficiency in the periphery.

This overview will demonstrate mechanisms why DHEAS is reduced in chronic inflammatory diseases. The importance of DHEAS deficiency will be demonstrated with respect to osteoporosis. As a consequence, we suggest a combined therapy with corticosteroids plus DHEA in chronic inflammatory diseases.

Key words

DHEA cortisol chronic inflammatory disease 

Hormonersatz mittels DHEA plus Glukokortikoide in der Therapie von Patienten mit chronisch entzündlichen Erkrankungen

Zusammenfassung

In früheren Studien an Ratten wurde gezeigt, dass eine Dysfunktion der Hypothalamus-Hypophysen-Nebennieren(HHN)-Achse vor allen Dingen im Bereich des Hypothalamus lokalisiert ist (genetisch determinierte inadäquate Sekretion von corticotropin-releasing-hormone). Dieser Defekt trug entscheidend zur Entwicklung einer Modell-Arthritis in diesen Tiermodellen bei. Beim Menschen stellte sich diese Situation allerdings anders dar: hier scheint der Defekt vor allen Dingen im Bereich der Nebenniere lokalisiert zu sein, wodurch es zu einer inadäquat niedrigen Kortisolproduktion bei chronisch entzündlichen Erkrankungen in Relation zum systemischen Entzündungsausmaß kommt. Neben Kortisol ist auch ein anderes adrenales Steroid, das Dehydroepiandrosteron (DHEA), drastisch erniedrigt. Die Ursache für die Störung der adrenalen Steroidproduktion bei rheumatoider Arthritis und anderen chronisch entzündlichen Erkrankungen ist zur Zeit nicht bekannt. Da DHEA sowohl den Tumor-Nekrose-Faktor Alpha (TNFα) als auch Interleukin(IL)-6 in vitro und in vivo hemmen kann, hat dieses adrenale Steroidhormon ebenso wie Kortisol wahrscheinlich eine antiinflammatorische Bedeutung. Die Wirkung des DHEA ist dabei durch eine Hemmung des nukleären Faktors NFκB vermittelt. Desweiteren kann DHEA in peripheren Zellen wie beispielsweise Makrophagen zu antiinflammatorisch wirksamen Geschlechtshormonen wie Testosteron umgewandelt werden. Bei Patienten mit chronisch entzündlichen Erkrankungen ist gerade DHEA deutlich erniedrigt, was durch eine zusätzliche Glukokortikoidtherapie noch verstärkt wird. Dieser Überblick demonstriert, warum gerade die Produktion von DHEA bei chronisch entzündlichen Erkrankungen erniedrigt ist. Die Bedeutung der DHEA-Verarmung wird am Beispiel der Osteoporose demonstriert. Es wird dargestellt, weshalb die parallele Therapie mit Glukokortikoiden plus DHEA eine interessante Therapieoption bei chronisch entzündlichen Erkrankungen darstellt.

Schlüsselwörter

DHEA Cortisol Chronisch-entzündliche Erkrankungen 

References

  1. 1.
    Angele MK, Ayala A, Monfils BA, Cioffi WG, Bland KI, Chaudry IH (1998) Testosterone and/or low estradiol: normally required but harmful immunologically for males after trauma-hemorrhage. J Trauma 44: 78–85PubMedGoogle Scholar
  2. 2.
    Araghi-Niknam M, Liang B, Zhang Z, Ardestani SK, Watson RR (1997) Modulation of immune dysfunction during murine leukaemia retrovirus infection of old mice by dehydroepiandrosterone sulphate (DHEAS). Immunology 90: 344–349PubMedCentralPubMedGoogle Scholar
  3. 3.
    Araghi-Niknam M, Zhang Z, Jiang S, Call O, Eskelson CD, Watson RR (1997) Cytokine dysregulation and increased oxidation is prevented by dehydroepiandrosterone in mice infected with murine leukemia retrovirus. Proc Soc Exp Biol Med 216: 386–391PubMedGoogle Scholar
  4. 4.
    Araneo B, Daynes R (1995) Dehydroepiandrosterone functions as more than an antiglucocorticoid in preserving immunocompetence after thermal injury. Endocrinology 136: 393–401PubMedGoogle Scholar
  5. 5.
    Azuma Y, Kaji K, Katogi R, Takeshita S, Kudo A (2000) Tumor necrosis factoralpha induces differentiation of and bone resorption by osteoclasts. J Biol Chem 275: 4858–4864PubMedGoogle Scholar
  6. 6.
    Bellido T, Jilka RL, Boyce BF, Girasole G, Broxmeyer H, Dalrymple SA, Murray R, Manolagas SC (1995) Regulation of interleukin-6, osteoclastogenesis, and bone mass by androgens. The role of the androgen receptor. J Clin Invest 95: 2886–2895PubMedCentralPubMedGoogle Scholar
  7. 7.
    Bernardini R, Kamilaris TC, Calogero AE, Johnson EO, Gomez MT, Gold PW, Chrousos GP (1990) Interactions between tumor necrosis factor-alpha, hypothalamic corticotropin-releasing hormone, and adrenocorticotropin secretion in the rat. Endocrinology 126: 2876–2881PubMedGoogle Scholar
  8. 8.
    Besedovsky H, Sorkin E, Felix D, Haas H (1977) Hypothalamic changes during the immune response. Eur J Immunol 7: 323–325PubMedGoogle Scholar
  9. 9.
    Besedovsky HO, Del Rey A (1996) Immune-neuro-endocrine interactions. Endocr Rev 17: 64–102PubMedGoogle Scholar
  10. 10.
    Besedovsky HO, Del Rey A, Sorkin E, Dinarello C (1986) Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science 233: 652–654PubMedGoogle Scholar
  11. 11.
    Bijlsma JW (1999) Can we use steroid hormones to immunomodulate rheumatic diseases? Rheumatoid arthritis as an example. Ann N Y Acad Sci 876: 366–76; discussion 376-7: 366–376PubMedGoogle Scholar
  12. 12.
    Blauer KL, Poth M, Rogers WM, Bernton EW (1991) Dehydroepiandrosterone antagonizes the suppressive effects of dexamethasone on lymphocyte proliferation. Endocrinology 129: 3174–3179PubMedGoogle Scholar
  13. 13.
    Boccuzzi G, Aragno M, Seccia M, Brignardello E, Tamagno E, Albano E, Danni O, Bellomo G (1997) Protective effect of dehydroepiandrosterone against copper-induced lipid peroxidation in the rat. Free Radic Biol Med 22: 1289–1294PubMedGoogle Scholar
  14. 14.
    Browne ES, Porter JR, Correa G, Abadie J, Svec F (1993) Dehydroepiandrosterone regulation of the hepatic glucocorticoid receptor in the Zucker rat. The obesity research program. J Steroid Biochem Mol Biol 45: 517–524PubMedGoogle Scholar
  15. 15.
    Canning MB, Billington WD (1983) Hormonal regulation of immunoglobulins and plasma cells in the mouse uterus. J Endocrinol 97: 419–424PubMedGoogle Scholar
  16. 16.
    Carr DJ (1998) Increased levels of IFN-gamma in the trigeminal ganglion correlate with protection against HSV-1-induced encephalitis following subcutaneous administration with androstenediol. J Neuroimmunol 89: 160–167PubMedGoogle Scholar
  17. 17.
    Chesney RW, Mazess RB, Hamstra AJ, Deluca HF, O'Reagan S (1978) Reduction of serum-1, 25-dihydroxyvitamin-D3 in children receiving glucocorticoids. Lancet 2: 1123–1125PubMedGoogle Scholar
  18. 18.
    Correale J, Arias M, Gilmore W (1998) Steroid hormone regulation of cytokine secretion by proteolipid protein-specific CD4+ T cell clones isolated from multiple sclerosis patients and normal control subjects. J Immunol 161: 3365–3374PubMedGoogle Scholar
  19. 19.
    Cutolo M, Balleari E, Giusti M, Monachesi M, Accardo S (1986) Sex hormone status in women suffering from rheumatoid arthritis. J Rheumatol 13: 1019–1023PubMedGoogle Scholar
  20. 20.
    Cutolo M, Balleari E, Giusti M, Monachesi M, Accardo S (1988) Sex hormone status of male patients with rheumatoid arthritis: evidence of low serum concentrations of testosterone at baseline and after human chorionic gonadotropin stimulation. Arthritis Rheum 31: 1314–1317PubMedGoogle Scholar
  21. 21.
    Cutolo M, Foppiani L, Prete C, Ballarino P, Sulli A, Villaggio B, Seriolo B, Giusti M, Accardo S (1999) Hypothalamic-pituitary- adrenocortical axis function in premenopausal women with rheumatoid arthritis not treated with glucocorticoids. J Rheumatol 26: 282–288PubMedGoogle Scholar
  22. 22.
    Danenberg HD, Alpert G, Lustig S, Ben-Nathan D (1992) Dehydroepiandrosterone protects mice from endotoxin toxicity and reduces tumor necrosis factor production. Antimicrob Agents Chemother 36: 2275–2279PubMedCentralPubMedGoogle Scholar
  23. 23.
    Dashtaki R, Whorton AR, Murphy TM, Chitano P, Reed W, Kennedy TP (1998) Dehydroepiandrosterone and analogs inhibit DNA binding of AP-1 and airway smooth muscle proliferation. J Pharmacol Exp Ther 285: 876–883PubMedGoogle Scholar
  24. 24.
    Daynes RA, Araneo BA, Ershler WB, Maloney C, Li GZ, Ryu SY (1993) Altered regulation of IL-6 production with normal aging. Possible linkage to the age-associated decline in dehydroepiandrosterone and its sulfated derivative. J Immunol 150: 5219–5230PubMedGoogle Scholar
  25. 25.
    de la Torre B, Fransson J, Scheynius A (1995) Blood dehydroepiandrosterone sulphate (DHEAS) levels in pemphigoid/ pemphigus and psoriasis. Clin Exp Rheumatol 13: 345–348PubMedGoogle Scholar
  26. 26.
    Dent PB, Walker N (1998) Intra-articular corticosteroids in the treatment of juvenile rheumatoid arthritis. Curr Opin Rheumatol 10: 475–480PubMedGoogle Scholar
  27. 27.
    Deshpande R, Khalili H, Pergolizzi RG, Michael SD, Chang MD (1997) Estradiol down-regulates LPS-induced cytokine production and NFκB activation in murine macrophages. Am J Reprod Immunol 38: 46–54PubMedGoogle Scholar
  28. 28.
    Di Santo E, Foddi MC, Ricciardi-Castagnoli P, Mennini T, Ghezzi P (1996) DHEAS inhibits TNF production in monocytes, astrocytes and microglial cells. Neuroimmunomodulation 3: 285–288PubMedGoogle Scholar
  29. 29.
    Dougados M, Nahoul K, Benhamou L, Jungers P, Laplane D, Amor B (1984) Study of plasma androgens in women with autoimmune diseases. Rev Rhum Mal Osteoartic 51: 145–149PubMedGoogle Scholar
  30. 30.
    Feher KG, Feher T (1984) Plasma dehydroepiandrosterone, dehydroepiandrosterone sulphate and androsterone sulphate levels and their interaction with plasma proteins in rheumatoid arthritis. Exp Clin Endocrinol 84: 197–202PubMedGoogle Scholar
  31. 31.
    Fleshner M, Goehler LE, Hermann J, Relton JK, Maier SF, Watkins LR (1995) Interleukin-1 beta induced corticosterone elevation and hypothalamic NE depletion is vagally mediated. Brain Res Bull 37: 605–610PubMedGoogle Scholar
  32. 32.
    Folomeev M, Dougados M, Beaune J, Kouyoumdjian JC, Nahoul K, Amor B, Alekberova Z (1992) Plasma sex hormones and aromatase activity in tissues of patients with systemic lupus erythematosus. Lupus 1: 191–195PubMedGoogle Scholar
  33. 33.
    Formiga F, Moga I, Nolla JM, Navarro MA, Bonnin R, Roig-Escofet D (1997) The association of dehydroepiandrosterone sulphate levels with bone mineral density in systemic lupus erythematosus. Clin Exp Rheumatol 15: 387–392PubMedGoogle Scholar
  34. 34.
    Giltay EJ, van Schaardenburg D, Gooren LJ, Dijkmans BA (1999) Dehydroepiandrosterone sulfate in patients with rheumatoid arthritis. Ann N Y Acad Sci 876: 152–4: 152–154PubMedGoogle Scholar
  35. 35.
    Girasole G, Jilka RL, Passeri G, Boswell S, Boder G, Williams DC, Manolagas SC (1992) 17 beta-estradiol inhibits interleukin- 6 production by bone marrowderived stromal cells and osteoblasts in vitro: a potential mechanism for the antiosteoporotic effect of estrogens. J Clin Invest 89: 883–891PubMedCentralPubMedGoogle Scholar
  36. 36.
    Gordon D, Beastall GH, Thomson JA, Sturrock RD (1986) Androgenic status and sexual function in males with rheumatoid arthritis and ankylosing spondylitis. Q J Med 60: 671–679PubMedGoogle Scholar
  37. 37.
    Hales DB (1992) Interleukin-1 inhibits Leydig cell steroidogenesis primarily by decreasing 17 alpha-hydroxylase/C17-20 lyase cytochrome P450 expression. Endocrinology 131: 2165–2172PubMedGoogle Scholar
  38. 38.
    Hedman M, Nilsson E, de la TB (1992) Low blood and synovial fluid levels of sulpho-conjugated steroids in rheumatoid arthritis. Clin Exp Rheumatol 10: 25–30PubMedGoogle Scholar
  39. 39.
    Henderson NK, Sambrook PN (1996) Relationship between osteoporosis and arthritis and effect of corticosteroids and other drugs on bone. Curr Opin Rheumatol 8: 365–369PubMedGoogle Scholar
  40. 40.
    Hernandez-Pando R, De La Luz S, Orozco H, Arriaga K, Pavon L, Al-Nakhli SA, Rook GA (1998) The effects of androstenediol and dehydroepiandrosterone on the course and cytokine profile of tuberculosis in BALB/c mice. Immunology 95: 234–241PubMedCentralPubMedGoogle Scholar
  41. 41.
    Herrmann M, Zietz B, Schölmerich J, Straub RH (2000) Modulation of steroidogenesis by cytokines and growth factors - are there consequences for chronic inflammatory diseases? (submitted)Google Scholar
  42. 42.
    Hodgson SF (1990) Corticosteroid-induced osteoporosis. Endocrinol Metab Clin North Am 19: 95–111PubMedGoogle Scholar
  43. 43.
    Hu Y, Cardounel A, Gursoy E, Anderson P, Kalimi M (2000) Anti-stress effects of dehydroepiandrosterone: protection of rats against repeated immobilization stress-induced weight loss, glucocorticoid receptor production, and lipid peroxidation. Biochem Pharmacol 59: 753–762PubMedGoogle Scholar
  44. 44.
    Inserra P, Zhang Z, Ardestani SK, Araghi-Niknam M, Liang B, Jiang S, Shaw D, Molitor M, Elliott K, Watson RR (1998) Modulation of cytokine production by dehydroepiandrosterone (DHEA) plus melatonin (MLT) supplementation of old mice. Proc Soc Exp Biol Med 218: 76–82PubMedGoogle Scholar
  45. 45.
    Irvine WJ, Toft AD, Wilson KS, Fraser R, Wilson A, Young J, Hunter WM, Ismail AA, Burger PE (1974) The effect of synthetic corticotropin analogues on adrenocortical, anterior pituitary and testicular function. J Clin Endocrinol Metab 39: 522–529PubMedGoogle Scholar
  46. 46.
    Jaattela M, Ilvesmaki V, Voutilainen R, Stenman UH, Saksela E (1991) Tumor necrosis factor as a potent inhibitor of adrenocorticotropin-induced cortisol production and steroidogenic P450 enzyme gene expression in cultured human fetal adrenal cells. Endocrinology 128: 623–629PubMedGoogle Scholar
  47. 47.
    Jablons DM, Mule JJ, McIntosh JK, Sehgal PB, May LT, Huang CM, Rosenberg SA, Lotze MT (1989) IL-6/IFN-beta-2 as a circulating hormone. Induction by cytokine administration in humans. J Immunol 142: 1542–1547PubMedGoogle Scholar
  48. 48.
    Kalimi M, Shafagoj Y, Loria R, Padgett D, Regelson W (1994) Anti-glucocorticoid effects of dehydroepiandrosterone (DHEA). Mol Cell Biochem 131: 99–104PubMedGoogle Scholar
  49. 49.
    Kanda N, Tsuchida T, Tamaki K (1996) Testosterone inhibits immunoglobulin production by human peripheral blood mononuclear cells. Clin Exp Immunol 106: 410–415PubMedCentralPubMedGoogle Scholar
  50. 50.
    Kanda N, Tsuchida T, Tamaki K (1997) Testosterone suppresses anti-DNA antibody production in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Arthritis Rheum 40: 1703–1711PubMedGoogle Scholar
  51. 51.
    Karlson P (1995) Adolf Butenandt (1903–1995). Nature 373: 660PubMedGoogle Scholar
  52. 52.
    Kasperk CH, Wakley GK, Hierl T, Ziegler R (1997) Gonadal and adrenal androgens are potent regulators of human bone cell metabolism in vitro. J Bone Miner Res 12: 464–471PubMedGoogle Scholar
  53. 53.
    Khalil A, Lehoux JG, Wagner RJ, Lesur O, Cruz S, Dupont E, Jay-Gerin JP, Wallach J, Fulop T (1998) Dehydroepiandrosterone protects low density lipoproteins against peroxidation by free radicals produced by gamma-radiolysis of ethanol-water mixtures. Atherosclerosis 136: 99–107PubMedGoogle Scholar
  54. 54.
    Kim HR, Ryu SY, Kim HS, Choi BM, Lee EJ, Kim HM, Chung HT (1995) Administration of dehydroepiandrosterone reverses the immune suppression induced by high dose antigen in mice. Immunol Invest 24: 583–593PubMedGoogle Scholar
  55. 55.
    Kimonides VG, Spillantini MG, Sofroniew MV, Fawcett JW, Herbert J (1999) Dehydroepiandrosterone antagonizes the neurotoxic effects of corticosterone and translocation of stress-activated protein kinase 3 in hippocampal primary cultures. Neuroscience 89: 429–436PubMedGoogle Scholar
  56. 56.
    Kimura M, Tanaka S, Yamada Y, Kiuchi Y, Yamakawa T, Sekihara H (1998) Dehydroepiandrosterone decreases serum tumor necrosis factor-alpha and restores insulin sensitivity: independent effect from secondary weight reduction in genetically obese Zucker fatty rats. Endocrinology 139: 3249–3253PubMedGoogle Scholar
  57. 57.
    Kirwan JR (1995) The effect of glucocorticoids on joint destruction in rheumatoid arthritis. The Arthritis and Rheumatism Council Low-Dose Glucocorticoid Study Group. N Engl J Med 333: 142–146PubMedGoogle Scholar
  58. 58.
    Kominami S, Ogawa N, Morimune R, De Ying H, Takemori S (1992) The role of cytochrome b5 in adrenal microsomal steroidogenesis. J Steroid Biochem Mol Biol 42: 57–64PubMedGoogle Scholar
  59. 59.
    Kumpfel T, Then BF, Friess E, Uhr M, Yassouridis A, Trenkwalder C, Holsboer F (1999) Dehydroepiandrosterone response to the adrenocorticotropin test and the combined dexamethasone and corticotropin-releasing hormone test in patients with multiple sclerosis. Neuroendocrinology 70: 431–438PubMedGoogle Scholar
  60. 60.
    Kuwano Y, Fujikawa H, Watanabe A, Shimodaira K, Sekizawa A, Saito H, Yanaihara T (1997) 3Beta-hydroxysteroid dehydrogenase activity in human osteoblast-like cells. Endocr J 44: 847–853PubMedGoogle Scholar
  61. 61.
    Labrie F, Diamond P, Cusan L, Gomez JL, Belanger A, Candas B (1997) Effect of 12-month dehydroepiandrosterone replacement therapy on bone, vagina, and endometrium in postmenopausal women. J Clin Endocrinol Metab 82: 3498–3505PubMedGoogle Scholar
  62. 63.
    Lahita RG, Bradlow HL, Ginzler E, Pang S, New M (1987) Low plasma androgens in women with systemic lupus erythematosus. Arthritis Rheum 30: 241–248PubMedGoogle Scholar
  63. 64.
    Loria RM, Inge TH, Cook SS, Szakal AK, Regelson W (1988) Protection against acute lethal viral infections with the native steroid dehydroepiandrosterone (DHEA). J Med Virol 26: 301–314PubMedGoogle Scholar
  64. 65.
    Lucas JA, Ahmed SA, Casey ML, MacDonald PC (1985) Prevention of autoantibody formation and prolonged survival in New Zealand black/New Zealand white F1 mice fed dehydroisoandrosterone. J Clin Invest 75: 2091–2093PubMedCentralPubMedGoogle Scholar
  65. 66.
    Luo S, Labrie C, Belanger A, Labrie F (1997) Effect of dehydroepiandrosterone on bone mass, serum lipids, and dimethylbenz(a)anthracene-induced mammary carcinoma in the rat. Endocrinology 138: 3387–3394PubMedGoogle Scholar
  66. 67.
    Mackworth-Young CG, Parke AL, Morley KD, Fotherby K, Hughes GR (1983) Sex hormones in male patients with systemic lupus erythematosus: a comparison with other disease groups. Eur J Rheumatol Inflamm 6: 228–232PubMedGoogle Scholar
  67. 68.
    Masi AT, Bijlsma JW, Chikanza IC, Pitzalis C, Cutolo M (1999) Neuroendocrine, immunologic, and microvascular systems interactions in rheumatoid arthritis: physiopathogenetic and therapeutic perspectives. Semin Arthritis Rheum 29: 65–81PubMedGoogle Scholar
  68. 69.
    Masi AT, Chrousos GP, Bornstein SR (1999) Enigmas of adrenal androgen and glucocorticoid dissociation in premenopausal onset rheumatoid arthritis. J Rheumatol 26: 247–250PubMedGoogle Scholar
  69. 70.
    Masi AT, Josipovic DB, Jefferson WE (1984) Low adrenal androgenic-anabolic steroids in women with rheumatoid arthritis (RA): gas-liquid chromatographic studies of RA patients and matched normal control women indicating decreased 11-deoxy-17-ketosteroid excretion. Semin Arthritis Rheum 14: 1–23PubMedGoogle Scholar
  70. 71.
    Mastorakos G, Chrousos GP, Weber JS (1993) Recombinant interleukin-6 activates the hypothalamic-pituitary-adrenal axis in humans. J Clin Endocrinol Metab 77: 1690–1694PubMedGoogle Scholar
  71. 72.
    Mateo L, Nolla JM, Bonnin MR, Navarro MA, Roig-Escofet D (1995) Sex hormone status and bone mineral density in men with rheumatoid arthritis. J Rheumatol 22: 1455–1460PubMedGoogle Scholar
  72. 73.
    Mauduit C, Gasnier F, Rey C, Chauvin MA, Stocco DM, Louisot P, Benahmed M (1998) Tumor necrosis factor-alpha inhibits leydig cell steroidogenesis through a decrease in steroidogenic acute regulatory protein expression. Endocrinology 139: 2863–2868PubMedGoogle Scholar
  73. 74.
    May M, Holmes E, Rogers W, Poth M (1990) Protection from glucocorticoid induced thymic involution by dehydroepiandrosterone. Life Sci 46: 1627–1631PubMedGoogle Scholar
  74. 75.
    Miller WL, Auchus RJ, Geller DH (1997) The regulation of 17,20 lyase activity. Steroids 62: 133–142PubMedGoogle Scholar
  75. 76.
    Mirone L, Altomonte L, D'Agostino P, Zoli A, Barini A, Magaro M (1996) A study of serum androgen and cortisol levels in female patients with rheumatoid arthritis. Correlation with disease activity. Clin Rheumatol 15: 15–19PubMedGoogle Scholar
  76. 77.
    Mohan PF, Jacobson MS (1993) Inhibition of macrophage superoxide generation by dehydroepiandrosterone. Am J Med Sci 306: 10–15PubMedGoogle Scholar
  77. 78.
    Morand EF (1998) Corticosteroids in the treatment of rheumatologic diseases. Curr Opin Rheumatol 10: 179–183PubMedGoogle Scholar
  78. 79.
    Muzulu SI, Howlett TA (1998) Polymyalgia rheumatica presenting after successful treatment of Cushing's disease. Br J Rheumatol 37: 804–805PubMedGoogle Scholar
  79. 80.
    Neeck G, Federlin K, Graef V, Rusch D, Schmidt KL (1990) Adrenal secretion of cortisol in patients with rheumatoid arthritis. J Rheumatol 17: 24–29PubMedGoogle Scholar
  80. 81.
    Nilsson E, de la TB, Hedman M, Goobar J, Thorner A (1994) Blood dehydroepiandrosterone sulphate (DHEAS) levels in polymyalgia rheumatica/giant cell arteritis and primary fibromyalgia. Clin Exp Rheumatol 12: 415–417PubMedGoogle Scholar
  81. 82.
    Nordin BE, Robertson A, Seamark RF, Bridges A, Philcox JC, Need AG, Horowitz M, Morris HA, Deam S (1985) The relation between calcium absorption, serum dehydroepiandrosterone, and vertebral mineral density in postmenopausal women. J Clin Endocrinol Metab 60: 651–657PubMedGoogle Scholar
  82. 82.
    Norton SD, Harrison LL, tYowell R, Araneo BA (1997) Administration of dehydroepiandrosterone sulfate retards onset but not progression of autoimmune disease in NZB/W mice. Autoimmunity 26: 161–171PubMedGoogle Scholar
  83. 83.
    Olbricht T, Benker G (1993) Glucocorticoid- induced osteoporosis: pathogenesis, prevention and treatment, with special regard to the rheumatic diseases. J Intern Med 234: 237–244PubMedGoogle Scholar
  84. 84.
    Onel KB (2000) Advances in the medical treatment of juvenile rheumatoid arthritis. Curr Opin Pediatr 12: 72–75PubMedGoogle Scholar
  85. 85.
    Orava M, Voutilainen R, Vihko R (1989) Interferon-gamma inhibits steroidogenesis and accumulation of mRNA of the steroidogenic enzymes P450scc and P450c17 in cultured porcine Leydig cells. Mol Endocrinol 3: 887–894PubMedGoogle Scholar
  86. 86.
    Paavonen T, Andersson LC, Adlercreutz H (1981) Sex hormone regulation of in vitro immune response. Estradiol enhances human B cell maturation via inhibition of suppressor T cells in pokeweed mitogen-stimulated cultures. J Exp Med 154: 1935–1945PubMedGoogle Scholar
  87. 87.
    Padgett DA, Loria RM (1998) Endocrine regulation of murine macrophage function: effects of dehydroepiandrosterone, androstenediol, and androstenetriol. J Neuroimmunol 84: 61–68PubMedGoogle Scholar
  88. 88.
    Padgett DA, Loria RM, Sheridan JF (1997) Endocrine regulation of the immune response to influenza virus infection with a metabolite of DHEAandrostenediol. J Neuroimmunol 78: 203–211PubMedGoogle Scholar
  89. 89.
    Parker LN, Levin ER, Lifrak ET (1985) Evidence for adrenocortical adaptation to severe illness. J Clin Endocrinol Metab 60: 947–952PubMedGoogle Scholar
  90. 90.
    Passeri G, Girasole G, Jilka RL, Manolagas SC (1993) Increased interleukin-6 production by murine bone marrow and bone cells after estrogen withdrawal. Endocrinology 133: 822–828PubMedGoogle Scholar
  91. 91.
    Passeri G, Girasole G, Manolagas SC, Jilka RL (1994) Endogenous production of tumor necrosis factor by primary cultures of murine calvarial cells: influence on IL-6 production and osteoclast development. Bone Miner 24: 109–126PubMedGoogle Scholar
  92. 92.
    Path G, Bornstein SR, Spath-Schwalbe E, Scherbaum WA (1996) Direct effects of interleukin-6 on human adrenal cells. Endocr Res 22: 867–873PubMedGoogle Scholar
  93. 93.
    Polley HF, Slocumb CH (1976) Behind the scenes with cortisone and ACTH. Mayo Clin Proc 51: 471–477PubMedGoogle Scholar
  94. 94.
    Poynter ME, Daynes RA (1998) Peroxisome proliferator-activated receptor alpha activation modulates cellular redox status, represses nuclear factor-kappaB signaling, and reduces inflammatory cytokine production in aging. J Biol Chem 273: 32833–32841PubMedGoogle Scholar
  95. 95.
    Pung OJ, Tucker AN, Vore SJ, Luster MI (1985) Influence of estrogen on host resistance: increased susceptibility of mice to Listeria monocytogenes correlates with depressed production of interleukin 2. Infect Immun 50: 91–96PubMedCentralPubMedGoogle Scholar
  96. 96.
    Ralston SH, Russell RG, Gowen M (1990) Estrogen inhibits release of tumor necrosis factor from peripheral blood mononuclear cells in postmenopausal women. J Bone Miner Res 5: 983–988PubMedGoogle Scholar
  97. 97.
    Ray A, Prefontaine KE, Ray P (1994) Down-modulation of interleukin-6 gene expression by 17 beta-estradiol in the absence of high affinity DNA binding by the estrogen receptor. J Biol Chem 269: 12940–12946PubMedGoogle Scholar
  98. 98.
    Robinzon B, Cutolo M (1999) Should dehydroepiandrosterone replacement therapy be provided with glucocorticoids? Rheumatology (Oxford) 38: 488–495Google Scholar
  99. 99.
    Rom WN, Harkin T (1991) Dehydroepiandrosterone inhibits the spontaneous release of superoxide radical by alveolar macrophages in vitro in asbestosis. Environ Res 55: 145–156PubMedGoogle Scholar
  100. 100.
    Sambrook PN, Eisman JA, Champion GD, Pocock NA (1988) Sex hormone status and osteoporosis in postmenopausal women with rheumatoid arthritis. Arthritis Rheum 31: 973–978PubMedGoogle Scholar
  101. 101.
    Sambrook PN, Eisman JA, Champion GD, Pocock NA (1988) Sex hormone status and osteoporosis in postmenopausal women with rheumatoid arthritis. Arthritis Rheum 31: 973–978PubMedGoogle Scholar
  102. 102.
    Scheven BA, Milne JS (1998) Dehydroepiandrosterone (DHEA) and DHEAS interact with 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) to stimulate human osteoblastic cell differentiation. Life Sci 62: 59–68PubMedGoogle Scholar
  103. 103.
    Schmidt M, Kreutz M, Löffler G, Schölmerich J, Straub RH (2000) Conversion of dehydroepiandrosterone to downstream steroid hormones in macrophages. J Endocrinol 164: 161–169PubMedGoogle Scholar
  104. 104.
    Senecal JL, Uthman I, Beauregard H (1994) Cushing's disease-induced remission of severe rheumatoid arthritis. Arthritis Rheum 37: 1826PubMedGoogle Scholar
  105. 105.
    Shafagoj Y, Opoku J, Qureshi D, Regelson W, Kalimi M (1992) Dehydroepiandrosterone prevents dexamethasone- induced hypertension in rats. Am J Physiol 263: E210–E213PubMedGoogle Scholar
  106. 106.
    Späth-Schwalbe E, Born J, Schrezenmeier H, Bornstein SR, Stromeyer P, Drechsler S, Fehm HL, Porzsolt F (1994) Interleukin-6 stimulates the hypothalamus- pituitary-adrenocortical axis in man. J Clin Endocrinol Metab 79: 1212–1214PubMedGoogle Scholar
  107. 107.
    Spector TD, Perry LA, Tubb G, Silman AJ, Huskisson EC (1988) Low free testosterone levels in rheumatoid arthritis. Ann Rheum Dis 47: 65–68PubMedCentralPubMedGoogle Scholar
  108. 108.
    Spencer NF, Norton SD, Harrison LL, Li GZ, Daynes RA (1996) Dysregulation of IL-10 production with aging: possible linkage to the age-associated decline in DHEA and its sulfated derivative. Exp Gerontol 31: 393–408PubMedGoogle Scholar
  109. 109.
    Straub RH, Glück T, Cutolo M, Georgi J, Helmke K, Schölmerich J, Vaith P, Lang B (2000) The adrenal steroid status in relation to inflammatory cytokines (IL-6 and TNF) in polymyalgia rheumatica. Rheumatology 39: 624–631PubMedGoogle Scholar
  110. 110.
    Straub RH, Konecna L, Hrach S, Rothe G, Kreutz M, Schölmerich J, Falk W, Lang B (1998) Serum dehydroepiandrosterone (DHEA) and DHEA sulfate are negatively correlated with serum interleukin- 6 (IL-6), and DHEA inhibits IL-6 secretion from mononuclear cells in man in vitro: possible link between endocrinosenescence and immunosenescence. J Clin Endocrinol Metab 83: 2012–2017PubMedGoogle Scholar
  111. 111.
    Straub RH, Miller LE, Schölmerich J, Zietz B (2000) Cytokines and hormones as possible links between endocrinosenescence and immunosenescence. J Neuroimmunol (in press)Google Scholar
  112. 112.
    Straub RH, Muller-Ladner U, Lichtinger T, Schölmerich J, Menninger H, Lang B (1997) Decrease of interleukin 6 during the first 12 months is a prognostic marker for clinical outcome during 36 months treatment with disease-modifying antirheumatic drugs. Br J Rheumatol 36: 1298–1303PubMedGoogle Scholar
  113. 113.
    Straub RH, Vogl D, Gross V, Lang B, Schölmerich J, Andus T (1998) Association of humoral markers of inflammation and dehydroepiandrosterone sulfate or cortisol serum levels in patients with chronic inflammatory bowel disease. Am J Gastroenterol 93: 2197–2202PubMedGoogle Scholar
  114. 114.
    Straub RH, Zeuner M, Antoniou E, Schölmerich J, Lang B (1996) Dehydroepiandrosterone sulfate is positively correlated with soluble interleukin 2 receptor and soluble intercellular adhesion molecule in systemic lupus erythematosus. J Rheumatol 23: 856–861PubMedGoogle Scholar
  115. 115.
    Straub RH, Zeuner M, Lock G, Schölmerich J, Lang B (1997) High prolactin and low dehydroepiandrosterone sulphate serum levels in patients with severe systemic sclerosis. Br J Rheumatol 36: 426–432PubMedGoogle Scholar
  116. 116.
    Suzuki Y, Ichikawa Y, Saito E, Homma M (1983) Importance of increased urinary calcium excretion in the development of secondary hyperparathyroidism of patients under glucocorticoid therapy. Metabolism 32: 151–156PubMedGoogle Scholar
  117. 117.
    Szathmari M, Szucs J, Feher T, Hollo I (1994) Dehydroepiandrosterone sulphate and bone mineral density. Osteoporos Int 4: 84–88PubMedGoogle Scholar
  118. 118.
    Tabata N, Tagami H, Terui T (1997) Dehydroepiandrosterone may be one of the regulators of cytokine production in atopic dermatitis. Arch Dermatol Res 289: 410–414PubMedGoogle Scholar
  119. 119.
    Tamagno E, Aragno M, Boccuzzi G, Gallo M, Parola S, Fubini B, Poli G, Danni O (1998) Oxygen free radical scavenger properties of dehydroepiandrosterone. Cell Biochem Funct 16: 57–63PubMedGoogle Scholar
  120. 120.
    Tani-Ishii N, Tsunoda A, Teranaka T, Umemoto T (1999) Autocrine regulation of osteoclast formation and bone resorption by IL-1 alpha and TNF alpha. J Dent Res 78: 1617–1623PubMedGoogle Scholar
  121. 121.
    Turner RT, Lifrak ET, Beckner M, Wakley GK, Hannon KS, Parker LN (1990) Dehydroepiandrosterone reduces cancellous bone osteopenia in ovariectomized rats. Am J Physiol 258: E673–E677PubMedGoogle Scholar
  122. 122.
    Tyrell JB, Aron DC, Forsham PH (1995) Glucocorticoids and adrenal androgens. In: Greenspan FS (ed) Basic and Clinical Endocrinology. Appleton & Lange, East Norwalk, pp 323–362Google Scholar
  123. 123.
    Udagawa N, Takahashi N, Katagiri T, Tamura T, Wada S, Findlay DM, Martin TJ, Hirota H, Taga T, Kishimoto T (1995) Interleukin (IL)-6 induction of osteoclast differentiation depends on IL-6 receptors expressed on osteoblastic cells but not on osteoclast progenitors. J Exp Med 182: 1461–1468PubMedGoogle Scholar
  124. 124.
    Uthman I, Senecal JL (1995) Onset of rheumatoid arthritis after surgical treatment of Cushing's disease. J Rheumatol 22: 1964–1966PubMedGoogle Scholar
  125. 125.
    Vaitukaitis JL, Dale SL, Melby JC (1969) Role of ACTH in the secretion of free dehydroepiandrosterone and its sulfate ester in man. J Clin Endocrinol Metab 29: 1443–1447PubMedGoogle Scholar
  126. 126.
    van Vollenhoven RF (1998) Corticosteroids in rheumatic disease. Understanding their effects is key to their use. Postgrad Med 103: 137–142PubMedGoogle Scholar
  127. 127.
    van Vollenhoven RF, Engleman EG, McGuire JL (1994) An open study of dehydroepiandrosterone in systemic lupus erythematosus. Arthritis Rheum 37: 1305–1310PubMedGoogle Scholar
  128. 128.
    van Vollenhoven RF, Engleman EG, McGuire JL (1995) Dehydroepiandrosterone in systemic lupus erythematosus. Results of a double-blind, placebo-controlled, randomized clinical trial. Arthritis Rheum 38: 1826–1831PubMedGoogle Scholar
  129. 129.
    van Vollenhoven RF, Morabito LM, Engleman EG, McGuire JL (1998) Treatment of systemic lupus erythematosus with dehydroepiandrosterone: 50 patients treated up to 12 months. J Rheumatol 25: 285–289PubMedGoogle Scholar
  130. 130.
    van Vollenhoven RF, Park JL, Genovese MC, West JP, McGuire JL (1999) A double- blind, placebo-controlled, clinical trial of dehydroepiandrosterone in severe systemic lupus erythematosus. Lupus 8: 181–187PubMedGoogle Scholar
  131. 131.
    Verhoeven AC, Boers M (1997) Limited bone loss due to corticosteroids; a systematic review of prospective studies in rheumatoid arthritis and other diseases. J Rheumatol 24: 1495–1503PubMedGoogle Scholar
  132. 132.
    Wichmann MW, Ayala A, Chaudry IH (1997) Male sex steroids are responsible for depressing macrophage immune function after trauma-hemorrhage. Am J Physiol 273: C1335–C1340PubMedGoogle Scholar
  133. 133.
    Wilder RL (1996) Adrenal and gonadal steroid hormone deficiency in the pathogenesis of rheumatoid arthritis. J Rheumatol Suppl 44: 10–2: 10–12PubMedGoogle Scholar
  134. 134.
    Williams PJ, Jones RH, Rademacher TW (1997) Reduction in the incidence and severity of collagen-induced arthritis in DBA/1 mice, using exogenous dehydroepiandrosterone. Arthritis Rheum 40: 907–911PubMedGoogle Scholar
  135. 135.
    Wright BE, Porter JR, Browne ES, Svec F (1992) Antiglucocorticoid action of dehydroepiandrosterone in young obese Zucker rats. Int J Obes Relat Metab Disord 16: 579–583PubMedGoogle Scholar
  136. 136.
    Xia-Zhang L, Xiao E, Ferin M (1995) A 5-day estradiol therapy, in amounts reproducing concentrations of the earlymid follicular phase, prevents the activation of the hypothalamo-pituitary-adrenal axis by interleukin-1 alpha in the ovariectomized rhesus monkey. J Neuroendocrinol 7: 387–392PubMedGoogle Scholar
  137. 137.
    Xiong Y, Hales DB (1997) Differential effects of tumor necrosis factor-alpha and interleukin-1 on 3 beta-hydroxysteroid dehydrogenase/delta 5—>delta 4 isomerase expression in mouse Leydig cells. Endocrine 7: 295–301PubMedGoogle Scholar
  138. 138.
    Yakushiji F, Kita M, Hiroi N, Ueshiba H, Monma I, Miyachi Y (1995) Exacerbation of rheumatoid arthritis after removal of adrenal adenoma in Cushing's syndrome. Endocr J 42: 219–223PubMedGoogle Scholar
  139. 139.
    Young DG, Skibinski G, Mason JI, James K (1999) The influence of age and gender on serum dehydroepiandrosterone sulphate (DHEA-S), IL-6, IL-6 soluble receptor (IL-6 sR) and transforming growth factor beta 1 (TGF-beta1) levels in normal healthy blood donors. Clin Exp Immunol 117: 476–481PubMedCentralPubMedGoogle Scholar

Copyright information

© Steinkopff Verlag 2000

Authors and Affiliations

  1. 1.Laboratory of Neuroendocrinoimmunology, Department of Internal Medicine IUniversity HospitalRegensburgGermany

Personalised recommendations