Association between IL-17 gene polymorphisms and circulating IL-17 levels in osteoarthritis: a meta-analysis

  • Y. H. LeeEmail author
  • G. G. Song



This study systemically reviewed the evidence regarding associations between polymorphisms in interleukin-17 (IL-17) genes and osteoarthritis (OA) susceptibility, and the relationship between circulating IL-17 levels and OA.


We performed a meta-analysis of the associations between the IL-17A rs2275913 and IL-17F rs763780 polymorphisms and risk for OA and serum/plasma IL-17 levels in OA patients and controls.


Eight studies including 2214 OA patients and 2474 controls were included. Our meta-analysis identified a significant association between OA and the AA genotype of the IL-17A rs2275913 polymorphism in a pooled cohort of affected individuals, compared to the case in a pooled cohort of control participants (OR = 1.516, 95% CI = 1.260–1.825, P < 0.001), and a significant association between OA and the CC genotype of the IL-17F rs763780 polymorphism (OR = 2.257, 95% CI = 1.376–3.704, p = 0.001). OA site-based stratification identified an association between the AA genotype of the IL-17A rs2275913 polymorphism and the CC genotype of the IL-17F rs763780 polymorphism and knee OA, but not hip OA. Furthermore, the same patterns of significant associations between OA and the IL-17A rs2275913 and IL-17F rs763780 polymorphisms were identified based on homozygote contrasts. The OA patients showed significantly higher IL-17 levels than the control subjects (SMD = 1.830, 95% CI = 1.184–2.477, P < 0.001).


Our meta-analysis revealed associations between the IL-17A rs2275913 and IL-17F rs763780 polymorphisms and OA susceptibility, and the presence of significantly higher circulating IL-17 levels in OA patients.


Osteoarthritis IL-17 Polymorphism Level Susceptibility 

Zusammenhang zwischen IL-17-Genpolymorphismen und zirkulierendem IL-17 bei Osteoarthrose: eine Metaanalyse



In der vorliegenden Studie wurde die Evidenz in Bezug auf Zusammenhänge zwischen Polymorphismen in Interleukin-17(IL-17)-Genen und der Anfälligkeit für Osteoarthrose (OA) sowie die Beziehung zwischen zirkulierenden IL-17-Spiegeln und OA systematisch untersucht.


Die Autoren führten eine Metaanalyse der Assoziationen zwischen den IL-17A-rs2275913- und IL-17F-rs763780-Polymorphismen und dem Risiko für eine OA sowie den Serum/Plasma-IL-17-Spiegeln bei OA-Patienten und Kontrollen durch.


In die Auswertung wurden 8 Studien mit 2214 OA-Patienten und 2474 Kontrollen eingeschlossen. Die Metaanalyse ergab eine signifikante Assoziation zwischen OA und dem AA-Genotyp des IL-17A-rs2275913-Polymorphismus in einer gepoolten Kohorte betroffener Personen im Vergleich zum Fall einer gepoolten Kohorte von Kontrollpersonen (Odds Ratio, OR = 1,516; 95%-Konfidenzintervall, 95%-KI = 1,260–1,825; p < 0,001) und eine signifikante Assoziation zwischen OA und dem CC-Genotyp des IL-17F-rs763780-Polymorphismus (OR = 2,257; 95%-KI = 1,376–3,704; p = 0,001). Die Stratifizierung nach Lokalisation der OA ergab einen Zusammenhang zwischen dem AA-Genotyp des IL-17A-rs2275913-Polymorphismus und dem CC-Genotyp des IL-17F-rs763780-Polymorphismus und OA im Knie, nicht aber OA in der Hüfte. Darüber hinaus zeigten sich die gleichen Muster signifikanter Assoziationen zwischen OA und den IL-17A-rs2275913- sowie IL-17F-rs763780-Polymorphismen auf der Basis homozygoter Kontraste. Bei den OA-Patienten waren signifikant höhere IL-17-Werte als bei den Kontrollen nachweisbar (standardisierte Mittelwertdifferenzen, SMD = 1,830; 95%-KI = 1,184–2,477; p < 0,001).


Die vorliegende Metaanalyse ergab Zusammenhänge zwischen den IL-17A-rs2275913- und IL-17F-rs763780-Polymorphismen und der Anfälligkeit für OA sowie das Vorliegen signifikant höherer zirkulierender IL-17-Werte bei OA-Patienten.


Osteoarthrose IL-17 Polymorphismus Level Anfälligkeit 



This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Compliance with ethical guidelines

Conflict of interest

Y. H. Lee and G. G. Song declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.


  1. 1.
    Felson DT, Zhang Y (1998) An update on the epidemiology of knee and hip osteoarthritis with a view to prevention. Arthritis Rheum 41:1343–1355CrossRefGoogle Scholar
  2. 2.
    Lee YH, Rho YH, Choi SJ, Ji JD, Song GG (2006) Osteoarthritis susceptibility loci defined by genome scan meta-analysis. Rheumatol Int 26:959–963CrossRefGoogle Scholar
  3. 3.
    Lee YH, Song GG (2018) Association between circulating adiponectin levels and osteoarthritis: a meta-analysis. J Rheum Dis 25:231–238CrossRefGoogle Scholar
  4. 4.
    Song GG, Lee YH (2019) Causal association between bone mineral density and osteoarthritis: a mendelian randomization study. J Rheum Dis 26:104–110CrossRefGoogle Scholar
  5. 5.
    Roark CL, Simonian PL, Fontenot AP, Born WK, O’Brien RL (2008) γδ T cells: an important source of IL-17. Curr Opin Immunol 20:353–357CrossRefGoogle Scholar
  6. 6.
    Onishi RM, Gaffen SL (2010) Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology 129:311–321CrossRefGoogle Scholar
  7. 7.
    Lee J, Lee S‑Y, Kang C‑M, Jhun JY, Kim JH, Cho M‑L, Park S‑H, Kim H‑Y, Kwok S‑K (2017) Interleukin-17 enhances germinal center formation and immunoglobulin G1 production in mice. J Rheum Dis 24:271–278CrossRefGoogle Scholar
  8. 8.
    Pacquelet S, Presle N, Boileau C, Dumond H, Netter P, Martel-Pelletier J, Pelletier J‑P, Terlain B, Jouzeau J‑Y (2002) Interleukin 17, a nitric oxide-producing cytokine with a peroxynitrite-independent inhibitory effect on proteoglycan synthesis. J Rheumatol 29:2602–2610PubMedGoogle Scholar
  9. 9.
    Bafrani HH, Ahmadi M, Jahantigh D, Karimian M (2019) Association analysis of the common varieties of IL17A and IL17F genes with the risk of knee osteoarthritis. J Cell Biochem. CrossRefPubMedGoogle Scholar
  10. 10.
    Jiang L, Zhou X, Xiong Y, Bao J, Xu K, Wu L (2019) Association between interleukin-17A/F single nucleotide polymorphisms and susceptibility to osteoarthritis in a Chinese population. Medicine 98:e14944CrossRefGoogle Scholar
  11. 11.
    Vrgoc G, Vrbanec J, Eftedal RK, Dembic PL, Balen S, Dembic Z, Jotanovic Z (2018) Interleukin-17 and Toll-like Receptor 10 genetic polymorphisms and susceptibility to large joint osteoarthritis. J Orthop Res 36:1684–1693CrossRefGoogle Scholar
  12. 12.
    Han L, Lee HS, Yoon JH, Choi WS, Park YG, Nam SW, Lee JY, Park WS (2014) Association of IL-17A and IL-17F single nucleotide polymorphisms with susceptibility to osteoarthritis in a Korean population. Gene 533:119–122CrossRefGoogle Scholar
  13. 13.
    Bai Y, Gao S, Liu Y, Jin S, Zhang H, Su K (2019) Correlation between Interleukin-17 gene polymorphism and osteoarthritis susceptibility in Han Chinese population. BMC Med Genet 20:20CrossRefGoogle Scholar
  14. 14.
    Askari A, Naghizadeh MM, Homayounfar R, Shahi A, Afsarian MH, Paknahad A, Kennedy D, Ataollahi MR (2016) Increased serum levels of IL-17A and IL-23 are associated with decreased vitamin D3 and increased pain in osteoarthritis. Plos One 11:e164757CrossRefGoogle Scholar
  15. 15.
    Liu Y, Peng H, Meng Z, Wei M (2015) Correlation of IL-17 level in synovia and severity of knee osteoarthritis. Med Sci Monit 21:1732–1736CrossRefGoogle Scholar
  16. 16.
    Chen B, Deng Y, Tan Y, Qin J, Chen LB (2014) Association between severity of knee osteoarthritis and serum and synovial fluid interleukin 17 concentrations. J Int Med Res 42:138–144CrossRefGoogle Scholar
  17. 17.
    Pappu R, Ramirez-Carrozzi V, Sambandam A (2011) The interleukin-17 cytokine family: critical players in host defence and inflammatory diseases. Immunology 134:8–16CrossRefGoogle Scholar
  18. 18.
    Lee YH, Song GG (2018) Overall and sex-specific mortality in psoriatic arthritis and ankylosing spondylitis: a meta-analysis. J Rheum Dis 25:197–202CrossRefGoogle Scholar
  19. 19.
    Lee YH (2018) Association between the neutrophil-to-lymphocyte ratio, and platelet-to-lymphocyte ratio and rheumatoid arthritis and their correlations with the disease activity: a meta-analysis. J Rheum Dis 25:169–178CrossRefGoogle Scholar
  20. 20.
    Lee YH (2015) Meta-analysis of genetic association studies. Ann Lab Med 35:283–287CrossRefGoogle Scholar
  21. 21.
    Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Plos Med 6:e1000097CrossRefGoogle Scholar
  22. 22.
    Hozo SP, Djulbegovic B, Hozo I (2005) Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 5:13CrossRefGoogle Scholar
  23. 23.
    Ridout KK, Ridout SJ, Price LH, Sen S, Tyrka AR (2016) Depression and telomere length: a meta-analysis. J Affect Disord 191:237–247CrossRefGoogle Scholar
  24. 24.
    Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum, HillsdaleGoogle Scholar
  25. 25.
    Egger M, Smith GD, Phillips AN (1997) Meta-analysis: principles and procedures. BMJ 315:1533–1537CrossRefGoogle Scholar
  26. 26.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188CrossRefGoogle Scholar
  27. 27.
    Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558CrossRefGoogle Scholar
  28. 28.
    Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634CrossRefGoogle Scholar
  29. 29.
    Wojdasiewicz P, Poniatowski ŁA, Szukiewicz D (2014) The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Jo S, Wang SE, Lee YL, Kang S, Lee B, Han J, Sung IH, Park YS, Bae SC, Kim TH (2018) IL-17A induces osteoblast differentiation by activating JAK2/STAT3 in ankylosing spondylitis. Arthritis Res Ther 20:115CrossRefGoogle Scholar
  31. 31.
    Jin Y, Deng Z, Cao C, Li L (2015) IL-17 polymorphisms and asthma risk: a meta-analysis of 11 single nucleotide polymorphisms. J Asthma 52:981–988CrossRefGoogle Scholar
  32. 32.
    Liu XK, Lin X, Gaffen SL (2004) Crucial role for nuclear factor of activated T cells in T cell receptor-mediated regulation of human interleukin-17. J Biol Chem 279:52762–52771CrossRefGoogle Scholar
  33. 33.
    Kawaguchi M, Takahashi D, Hizawa N, Suzuki S, Matsukura S, Kokubu F, Maeda Y, Fukui Y, Konno S, Huang S‑K (2006) IL-17F sequence variant (His161Arg) is associated with protection against asthma and antagonizes wild-type IL-17F activity. J Allergy Clin Immunol 117:795–801CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Rheumatology, Department of Internal MedicineKorea University Anam Hospital, Korea University College of MedicineSeongbuk-gu, SeoulKorea (Republic of)

Personalised recommendations