Advertisement

The anti-aging protein alpha-Klotho in systemic sclerosis patients: does a relationship to telangiectasia exist?

  • M. H. NiazyEmail author
  • W. Gaber
  • S. Sayed
  • O. G. Shaker
  • T. A. Gheita
Originalien
  • 23 Downloads

Abstract

Objective

The anti-aging protein alpha-Klotho has been reported to have an emerging role in the pathogenesis of systemic sclerosis (SSc). More studies are needed to approach this issue. This study aimed to assess the serum levels of α‑Klotho in SSc patients compared to healthy controls, and to correlate them with the disease parameters.

Methods

Forty-two SSc patients were included in this study. History taking, clinical examination, and related investigations were performed. The modified Rodnan skin score (mRss) was used to assess skin tightness in SSc patients. Twenty-seven age- and sex-matched healthy participants served as controls. Serum α‑Klotho was assessed in the two groups.

Results

SSc patients comprised 39 females and 3 males; mean age was 42.2 ± 12.1 years and mean disease duration 8.5 ± 6.3 years. Serum α‑Klotho levels were decreased in scleroderma patients in comparison to healthy controls (p < 0.001). Scleroderma patients who had higher frequencies of telangiectasias and digital ischemic lesions had higher serum α‑Klotho levels (p = 0.01 and p = 0.04, respectively). By simple regression, only telangiectasias were significantly associated with higher α‑Klotho levels (p = 0.01). No other significant relationships were found between serum α‑Klotho and SSc disease parameters.

Conclusion

Scleroderma patients had significantly lower serum α‑Klotho levels than healthy controls. Higher α‑Klotho levels were significantly associated with telangiectasias. An imbalance in serum α‑Klotho levels may be involved in systemic sclerosis. Further longitudinal studies in a larger population of systemic sclerosis patients may provide a clearer clue for its role.

Keywords

Alpha-Klotho Biomarkers Systemic sclerosis Telangiectasias  Digital ischemic lesions 

Das Anti-Aging-Protein Alpha-Klotho bei Patienten mit systemischer Sklerose: Besteht ein Zusammenhang mit Teleangiektasien?

Zusammenfassung

Ziel

Zunehmend gibt es Hinweise auf eine Beteiligung des Anti-Aging-Proteins α‑Klotho an der Pathogenese der systemischen Sklerose (SSc). Zur Klärung dieser Frage sind weitere Untersuchungen erforderlich. Ziel der vorliegenden Studie war es, die Serumspiegel von α‑Klotho bei SSc-Patienten zu bestimmen, mit denen von gesunden Kontrollen zu vergleichen und sie zu Krankheitsparametern in Beziehung zu setzen.

Methoden

Dazu wurden 42 SSc-Patienten in die Studie aufgenommen. Neben Anamneseerhebung und klinischer Untersuchung erfolgte weitere Diagnostik. So wurde der modifizierte Rodnan-Haut-Score (mRss) zur Beurteilung der Hautdicke bei SSc-Patienten verwendet. Als Kontrollen dienten 27 nach Alter und Geschlecht entsprechend ausgewählte gesunde Probanden. Serum-α-Klotho wurde in beiden Gruppen bestimmt.

Ergebnisse

Zu den SSc-Patienten gehörten 39 Frauen und 3 Männer; das Durchschnittsalter betrug 42,2 ± 12,1 Jahre und die mittlere Krankheitsdauer 8,5 ± 6,3 Jahre. Die Serumspiegel von α‑Klotho waren bei den Sklerodermiepatienten im Vergleich zu den gesunden Kontrollen vermindert (p < 0,001). Sklerodermiepatienten, bei denen häufiger Teleangiektasien und ischämische Läsionen der Finger auftraten, wiesen höhere Serumspiegel für α‑Klotho auf (p = 0,01 bzw. p = 0,04). Bei einfacher Regressionsanalyse stellten sich nur Teleangiektasien als signifikant mit höheren α‑Klotho-Spiegeln assoziiert heraus (p = 0,01). Es wurden keine weiteren signifikanten Zusammenhänge zwischen Serum-α-Klotho-Spiegeln und SSc-Krankheitsparametern festgestellt.

Schlussfolgerung

Bei Sklerodermiepatienten waren die Serumspiegel für α‑Klotho signifikant niedriger als bei den gesunden Kontrollen. Höhere α‑Klotho-Spiegel waren in signifikanter Weise mit Teleangiektasien assoziiert. Ein Ungleichgewicht der Serumspiegel von α‑Klotho ist möglicherweise an der Entstehung der SSc beteiligt. Weitere Längsschnittstudien an einer größeren Population von SSc-Patienten könnten zur Rolle von α‑Klotho für die Scc nähere Hinweise geben.

Schlüsselwörter

Alpha-Klotho Biomarker Systemische Sklerose Telangiectasien Ischämische Läsionen der Finger 

Notes

Compliance with ethical guidelines

Conflict of interest

M.H. Niazy, W. Gaber, S. Sayed, O.G. Shaker, and T.A. Gheita declare that they have no competing interests.

All procedures performed in studies involving human participants or on human tissue were in accordance with the ethical standards of the institutional and/or national research committee and with the 1975 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Mulligan-Kehoe MJ, Simons M (2008) Vascular disease in scleroderma: angiogenesis and vascular repair. Rheum Dis Clin North Am 34(1):73–79PubMedCrossRefGoogle Scholar
  2. 2.
    Bassyouni IH, Gheita TA, Talaat RM (2011) Clinical significance of serum levels of sCD36 in patients with systemic sclerosis: preliminary data. Rheumatology 50(11):2108–2112PubMedCrossRefGoogle Scholar
  3. 3.
    Varga J, Abraham D (2007) Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest 117(3):557–567PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Abdel Moneim G, Darweesh HEA, Ismael M, Raafat S (2013) Frequency of disease subsets and patterns of organ involvement among Egyptian patients with systemic sclerosis—a retrospective study. Egypt Rheumatol 35(3):145–149CrossRefGoogle Scholar
  5. 5.
    Steen VD, Medsger TA Jr (2000) Severe organ involvement in systemic sclerosis with diffuse scleroderma. Arthritis Rheum 43(11):2437–2444PubMedCrossRefGoogle Scholar
  6. 6.
    Poole JL, Steen VD (1991) The use of the health assessment questionnaire (HAQ) to determine physical disability in systemic sclerosis. Arthritis Care Res 4(1):27–31PubMedCrossRefGoogle Scholar
  7. 7.
    Nguyen C, Bérezné A, Baubet T, Mestre-Stanislas C, Rannou F, Papelard A et al (2011) Association of gender with clinical expression, quality of life, disability, and depression and anxiety in patients with systemic sclerosis. Plos One 6(3):e17551.  https://doi.org/10.1371/0017551 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Lo Monaco A, Bruschi M, La Corte R, Volpinari S, Trotta F (2011) Epidemiology of systemic sclerosis in a district of northern Italy. Clin Exp Rheumatol 29(2 suppl 65):S10–S14PubMedGoogle Scholar
  9. 9.
    Kuro‑o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T et al (1997) Mutation of the mouse Klotho gene leads to a syndrome resembling ageing. Nature 390(6655):45–51PubMedCrossRefGoogle Scholar
  10. 10.
    Kuro‑o M (2010) Klotho. Pflugers Arch 459(2):333–343PubMedCrossRefGoogle Scholar
  11. 11.
    Bloch L, Sineshchekova O, Reichenbach D, Reiss K, Saftig P, Kuro‑o M et al (2009) Klotho is a substrate for alpha-, beta- and gamma-secretase. FEBS Lett 583(19):3221–3224PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Ahmadi R, Hajialilo M, Ghorbanihaghjo A, Mota A, Raeisi S, Bargahi N et al (2017) FGF-23, Klotho and Vitamin D Levels in Scleroderma. Iran J Public Health 46(4):530–536PubMedPubMedCentralGoogle Scholar
  13. 13.
    Hajialilo M, Noorabadi P, Tahsini TS, Malek MA (2017) Endothelin−1, α‑Klotho, 25(OH) Vit D levels and severity of disease in scleroderma patients. Rheumatol Int 37(10):1651–1657PubMedCrossRefGoogle Scholar
  14. 14.
    Hu MC, Shi M, Zhang J, Pastor J, Nakatani T, Lanske B et al (2010) Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J 24(9):3438–3450PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Talotta R, Letizia T, Rigamonti F, Ditto MC, Atzeni F et al (2017) Measurement of serum Klotho in systemic sclerosis. Dis Markers.  https://doi.org/10.1155/2017/9545930 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Martín-Núñez E, Donate-Correa J, Muros-de-Fuentes M, Mora-Fernández C, Navarro-González JF (2014) Implications of Klotho in vascular health and disease. World J Cardiol 6(12):1262–1269PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    van den Hoogen F, Khanna D, Fransen J, Johnson SR, Baron M, Tyndall A et al (2013) classification criteria for systemic sclerosis: an american college of rheumatology/European league against rheumatism collaborative initiative. Ann Rheum Dis 72(11):1747–1755PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    LeRoy EC, Black C, Fleischmajer R, Jablonska S, Krieg T, Medsger TA Jr et al (1988) Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol 15(2):202–205PubMedGoogle Scholar
  19. 19.
    Clements P, Lachenbruch P, Siebold J, White B, Weiner S, Martin R et al (1995) Inter and intraobserver variability of total skin thickness score (modified Rodnan TSS) in systemic sclerosis. J Rheumatol 22(7):1281–1285PubMedGoogle Scholar
  20. 20.
    Biggerstaff BJ (2000) Comparing diagnostic tests: a simple graphic using likelihood ratios. Stat Med 19(5):649–663PubMedCrossRefGoogle Scholar
  21. 21.
    Gabrielli A, Avvedimento EV, Krieg T (2009) Scleroderma. N Engl J Med 360:1989–2003CrossRefGoogle Scholar
  22. 22.
    Moreno JA, Izquierdo MC, Sanchez-Niño MD, Suárez-Alvarez B, Lopez-Larrea C, Jakubowski A et al (2011) The inflammatory cytokines TWEAK and TNF reduce renal klotho expression through NF kB. J Am Soc Nephrol 22(7):1315–1325PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Liu F, Wu S, Ren H, Gu J (2011) Klotho suppresses RIG‑I mediated senescence-associated inflammation. Nat Cell Biol 13(3):254–262PubMedCrossRefGoogle Scholar
  24. 24.
    Zhao Y, Banerjee S, Dey N, LeJeune WS, Sarkar PS, Brobey R et al (2011) Klotho depletion contributes to increased inflammation in kidney of the db/db mouse model of diabetes via RelA (serine) 536 phosphorylation. Diabetes 60(7):1907–1916PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Liu H, Fergusson MM, Castilho RM, Liu J, Cao L, Chen J et al (2007) Augmented Wnt signaling in a mammalian model of accelerated aging. Science 317(5839):803–806PubMedCrossRefGoogle Scholar
  26. 26.
    Satoh M, Nagasu H, Morita Y, Yamaguchi TP, Kanwar YS, Kashihara N (2012) Klotho protects against mouse renal fibrosis by inhibiting Wnt signaling. Am J Physiol Renal Physiol 303(12):F1641–F1651PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Doi S, Zou Y, Togao O, Pastor JV, John GB, Wang L et al (2011) Klotho inhibits transforming growth factor-beta1 (TGF-beta1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J Biol Chem 286(10):8655–8665PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Bonhomme O, André B, Gester F, de Seny D, Moermans C, Struman I et al (2019) Biomarkers in systemic sclerosis-associated interstitial lung disease: review of the literature. Rheumatology.  https://doi.org/10.1093/rheumatology/kez230 PubMedCrossRefGoogle Scholar
  29. 29.
    Giacomelli R, Afeltra A, Alunno A, Bartoloni-Bocci E, Berardicurti O, Bombardieri M et al (2019) Guidelines for biomarkers in autoimmune rheumatic diseases—evidence based analysis. Autoimmun Rev 18(1):93–106PubMedCrossRefGoogle Scholar
  30. 30.
    Wigley FM (2009) Vascular disease in scleroderma. Clin Rev Allergy Immunol 36(2-3):150–175PubMedCrossRefGoogle Scholar
  31. 31.
    Shah AA, Wigley FM, Hummers LK (2010) Telangiectasias in scleroderma: a potential clinical marker of pulmonary arterial hypertension. J Rheumatol 37(1):98–104PubMedCrossRefGoogle Scholar
  32. 32.
    Mazzotta C, Manetti M, Rosa I, Romano E, Blagojevic J, Bellando-Randone S et al (2017) Proangiogenic effects of soluble α‑Klotho on systemic sclerosis dermal microvascular endothelial cells. Arthritis Res Ther 19(1):27–40PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239–247CrossRefGoogle Scholar
  34. 34.
    Kim JH, Hwang KH, Park KS, Kong ID, Cha SK (2015) Biological role of anti-aging protein klotho. J Lifestyle Med 5(1):1–6PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Lim K, Lu T, Molostvov G, Lee C, Lam FT, Zehnder D et al (2012) Vascular klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23. Circulation 125(18):2243–2255PubMedCrossRefGoogle Scholar
  36. 36.
    Olejnik A, Franczak A, Krzywonos-Zawadzka A, Kałużna-Oleksy M, Bil-Lula I (2018) The biological role of klotho protein in the development of cardiovascular diseases. Biomed Res Int 5171945:1–17CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • M. H. Niazy
    • 1
    Email author
  • W. Gaber
    • 1
  • S. Sayed
    • 1
  • O. G. Shaker
    • 2
  • T. A. Gheita
    • 1
  1. 1.Rheumatology Department, Faculty of MedicineCairo UniversityCairoEgypt
  2. 2.Medical Biochemistry and Molecular Biology Department, Faculty of MedicineCairo UniversityCairoEgypt

Personalised recommendations