Advertisement

Zeitschrift für Rheumatologie

, Volume 77, Issue 9, pp 776–782 | Cite as

Neue molekulare Mechanismen in der Pathophysiologie der Psoriasisarthritis

  • D. Simon
  • E. Kampylafka
  • A. J. Hueber
Leitthema
  • 146 Downloads

Zusammenfassung

Die komplexe Pathogenese der Psoriasisarthritis (PsA) ist weiterhin nur teilweise geklärt. In den letzten Jahren kam es jedoch v. a. mit Bezug auf Entzündungsvorgänge der Enthesen zu einem stark verbesserten Verständnis dieser Erkrankung. Der Krankheitsaspekt der Enthesitis differenziert die PsA zunehmend von anderen Autoimmunerkrankungen und schärft das einzigartige pathologische klinische Bild der PsA. Mittels besseren pathogenetischen Verständnisses und des Aufkommens verschiedener Biomarkeransätze rücken die erfolgreiche Früherkennung einer PsA sowie eine zuverlässigere Identifikation von Psoriasisrisikopatienten aus der fernen Zukunft deutlich näher.

Schlüsselwörter

Pathogenese Enthesitis Biomarker Früherkennung Risikopatient 

Novel molecular mechanisms in the pathophysiology of psoriatic arthritis

Abstract

The complex pathogenesis of psoriatic arthritis (PsA) is still only partially understood; however, recently a greatly improved understanding of this disease has been achieved, especially with respect to the inflammatory processes of the entheses. Thus, the clinical aspects of enthesitis increasingly differentiate PsA from other autoimmune diseases and sharpen the unique pathological clinical picture of PsA. Better pathophysiological understanding and the development of different biomarker approaches will bolster early detection of PsA. Therefore, the successful early recognition of PsA and more reliable identification of psoriasis patients at risk might be possible in the near future.

Keywords

Pathogenesis Enthesitis Biomarkers Early recognition Risk patients 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

D. Simon, E. Kampylafka und A.J. Hueber geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Prey S, Paul C, Bronsard V et al (2010) Assessment of risk of psoriatic arthritis in patients with plaque psoriasis: a systematic review of the literature. J Eur Acad Dermatol Venereol 24(Suppl 2):31–35CrossRefGoogle Scholar
  2. 2.
    Cretu D, Gao L, Liang K et al (2018) Differentiating psoriatic arthritis from psoriasis without psoriatic arthritis using novel serum biomarkers. Arthritis Care Res 70:454–461CrossRefGoogle Scholar
  3. 3.
    Lin J, Zhou Z, Huo R et al (2012) Cyr61 induces IL-6 production by fibroblast-like synoviocytes promoting Th17 differentiation in rheumatoid arthritis. J Immunol 188:5776–5784CrossRefGoogle Scholar
  4. 4.
    Ohshima S, Kuchen S, Seemayer CA et al (2003) Galectin 3 and its binding protein in rheumatoid arthritis. Arthritis Rheum 48:2788–2795CrossRefGoogle Scholar
  5. 5.
    Mahendran SM, Chandran V (2018) Exploring the psoriatic arthritis proteome in search of novel biomarkers. Proteomes 6(1):5.  https://doi.org/10.3390/proteomes6010005 CrossRefGoogle Scholar
  6. 6.
    Hansson C, Eriksson C, Alenius GM (2014) S‑calprotectin (S100A8/S100A9): a potential marker of inflammation in patients with psoriatic arthritis. J Immunol Res.  https://doi.org/10.1155/2014/696415 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Alenius GM, Eriksson C, Rantapaa Dahlqvist S (2009) Interleukin-6 and soluble interleukin-2 receptor alpha-markers of inflammation in patients with psoriatic arthritis? Clin Exp Rheumatol 27:120–123PubMedGoogle Scholar
  8. 8.
    Abji F, Pollock RA, Liang K et al (2016) Brief report: CXCL10 is a possible biomarker for the development of psoriatic arthritis among patients with psoriasis. Arthritis Rheumatol 68:2911–2916CrossRefGoogle Scholar
  9. 9.
    Nisihara R, Skare TL, Zeni JO et al (2018) Plasma levels of pentraxin 3 in patients with spondyloarthritis. Biomarkers 23:14–17CrossRefGoogle Scholar
  10. 10.
    Jadon DR, Sengupta R, Nightingale A et al (2017) Serum bone-turnover biomarkers are associated with the occurrence of peripheral and axial arthritis in psoriatic disease: a prospective cross-sectional comparative study. Arthritis Res Ther 19:210CrossRefGoogle Scholar
  11. 11.
    Ball J (1971) Enthesopathy of rheumatoid and ankylosing spondylitis. Ann Rheum Dis 30:213–223CrossRefGoogle Scholar
  12. 12.
    Polachek A, Li S, Chandran V et al (2017) Clinical enthesitis in a prospective longitudinal psoriatic arthritis cohort: incidence, prevalence, characteristics, and outcome. Arthritis Care Res 69:1685–1691CrossRefGoogle Scholar
  13. 13.
    Schett G, Lories RJ, D’Agostino MA et al (2017) Enthesitis: from pathophysiology to treatment. Nat Rev Rheumatol 13:731–741CrossRefGoogle Scholar
  14. 14.
    Johansen C, Usher PA, Kjellerup RB et al (2009) Characterization of the interleukin-17 isoforms and receptors in lesional psoriatic skin. Br J Dermatol 160:319–324CrossRefGoogle Scholar
  15. 15.
    van Baarsen LG, Lebre MC, van der Coelen D et al (2014) Heterogeneous expression pattern of interleukin 17A (IL-17A), IL-17F and their receptors in synovium of rheumatoid arthritis, psoriatic arthritis and osteoarthritis: possible explanation for nonresponse to anti-IL-17 therapy? Arthritis Res Ther 16:426CrossRefGoogle Scholar
  16. 16.
    Glatt S, Baeten D, Baker T et al (2018) Dual IL-17A and IL-17F neutralisation by bimekizumab in psoriatic arthritis: evidence from preclinical experiments and a randomised placebo-controlled clinical trial that IL-17F contributes to human chronic tissue inflammation. Ann Rheum Dis 77:523–532CrossRefGoogle Scholar
  17. 17.
    Bilal J, Berlinberg A, Bhattacharjee S et al (2018) A systematic review and meta-analysis of the efficacy and safety of the Interleukin (IL)-12/23 and IL-17 inhibitors Ustekinumab, Secukinumab, Ixekizumab, Brodalumab, Guselkumab, and Tildrakizumab for the treatment of moderate to severe plaque psoriasis. J Dermatolog Treat 28:1–10.  https://doi.org/10.1080/09546634.2017.1422591 Google Scholar
  18. 18.
    Paulissen SM, van Hamburg JP, Davelaar N et al (2013) Synovial fibroblasts directly induce Th17 pathogenicity via the cyclooxygenase/prostaglandin E2 pathway, independent of IL-23. J Immunol 191:1364–1372CrossRefGoogle Scholar
  19. 19.
    Reinhardt A, Yevsa T, Worbs T et al (2016) Interleukin-23-dependent gamma/delta T cells produce Interleukin-17 and accumulate in the enthesis, aortic valve, and ciliary body in mice. Arthritis Rheumatol 68:2476–2486CrossRefGoogle Scholar
  20. 20.
    Soare A, Weber S, Maul L et al (2018) Cutting edge: homeostasis of innate lymphoid cells is Imbalanced in psoriatic arthritis. J Immunol 200:1249–1254CrossRefGoogle Scholar
  21. 21.
    Cuthbert RJ, Fragkakis EM, Dunsmuir R et al (2017) Brief report: group 3 innate lymphoid cells in human enthesis. Arthritis Rheumatol 69:1816–1822CrossRefGoogle Scholar
  22. 22.
    Lories RJ, McInnes IB (2012) Primed for inflammation: enthesis-resident T cells. Nat Med 18:1018–1019CrossRefGoogle Scholar
  23. 23.
    Sherlock JP, Joyce-Shaikh B, Turner SP et al (2012) IL-23 induces spondyloarthropathy by acting on ROR-gammat+ CD3+CD4-CD8- entheseal resident T cells. Nat Med 18:1069–1076CrossRefGoogle Scholar
  24. 24.
    Kampylafka E, D’Oliveira I, Linz C et al (2017) FRI0625 Improvement of joint inflammation as assessed by MRI and power doppler ultrasound (PDUS) in an open label study in patients with active psoriatic arthritis treated with secukinumab (PSARTROS). Ann Rheum Dis 76:725–726Google Scholar
  25. 25.
    van der Heijde D, Gladman DD, Kishimoto M et al (2018) Efficacy and safety of Ixekizumab in patients with active psoriatic arthritis: 52-week results from a phase III study (SPIRIT-P1). J Rheumatol 45:367–377CrossRefGoogle Scholar
  26. 26.
    McInnes IB, Mease PJ, Ritchlin CT et al (2017) Secukinumab sustains improvement in signs and symptoms of psoriatic arthritis: 2 year results from the phase 3 FUTURE 2 study. Rheumatology (Oxf) 56:1993–2003CrossRefGoogle Scholar
  27. 27.
    Araujo E, Englbrecht M, Hoepken S et al (2017) OP0217 Ustekinumab is superior to TNF inhibitor treatment in resolving enthesitis in PSA patients with active enthesitis – results from the enthesial clearance in psoriatic arthritis (ECLIPSA) study. Ann Rheum Dis 76:142–142Google Scholar
  28. 28.
    Kavanaugh A, Mease PJ, Gomez-Reino JJ et al (2015) Longterm (52-week) results of a phase III randomized, controlled trial of apremilast in patients with psoriatic arthritis. J Rheumatol 42:479–488CrossRefGoogle Scholar
  29. 29.
    Nash P, Ohson K, Walsh J et al (2018) Early and sustained efficacy with apremilast monotherapy in biological-naive patients with psoriatic arthritis: a phase IIIB, randomised controlled trial (ACTIVE). Ann Rheum Dis 77:690–698CrossRefGoogle Scholar
  30. 30.
    van der Heijde D, Dougados M, Landewe R et al (2017) Sustained efficacy, safety and patient-reported outcomes of certolizumab pegol in axial spondyloarthritis: 4‑year outcomes from RAPID-axSpA. Rheumatology (Oxf) 56:1498–1509CrossRefGoogle Scholar
  31. 31.
    Matmati M, Jacques P, Maelfait J et al (2011) A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nat Genet 43:908–912CrossRefGoogle Scholar
  32. 32.
    De Wilde K, Martens A, Lambrecht S et al (2017) A20 inhibition of STAT1 expression in myeloid cells: a novel endogenous regulatory mechanism preventing development of enthesitis. Ann Rheum Dis 76:585–592CrossRefGoogle Scholar
  33. 33.
    Nair RP, Duffin KC, Helms C et al (2009) Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet 41:199–204CrossRefGoogle Scholar
  34. 34.
    Loft ND, Skov L, Rasmussen MK et al (2018) Genetic polymorphisms associated with psoriasis and development of psoriatic arthritis in patients with psoriasis. PLoS ONE 13:e192010CrossRefGoogle Scholar
  35. 35.
    Cascella R, Strafella C, Ragazzo M et al (2017) KIF3A and IL-4 are disease-specific biomarkers for psoriatic arthritis susceptibility. Oncotarget 8:95401–95411PubMedPubMedCentralGoogle Scholar
  36. 36.
    Simon D, Faustini F, Kleyer A et al (2016) Analysis of periarticular bone changes in patients with cutaneous psoriasis without associated psoriatic arthritis. Ann Rheum Dis 75:660–666CrossRefGoogle Scholar
  37. 37.
    Kocijan R, Englbrecht M, Haschka J et al (2015) Quantitative and qualitative changes of bone in psoriasis and psoriatic arthritis patients. J Bone Miner Res 30:1775–1783CrossRefGoogle Scholar
  38. 38.
    Ogdie A, Harter L, Shin D et al (2017) The risk of fracture among patients with psoriatic arthritis and psoriasis: a population-based study. Ann Rheum Dis 76:882–885CrossRefGoogle Scholar
  39. 39.
    Amin TE, ElFar NN, Ghaly NR et al (2016) Serum level of receptor activator of nuclear factor kappa-B ligand in patients with psoriasis. Int J Dermatol 55:e227–e233CrossRefGoogle Scholar
  40. 40.
    Paine A, Ritchlin C (2018) Altered bone remodeling in psoriatic disease: new insights and future directions. Calcif Tissue Int.  https://doi.org/10.1007/s00223-017-0380-2 CrossRefPubMedGoogle Scholar
  41. 41.
    Kotake S, Udagawa N, Takahashi N et al (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103:1345–1352CrossRefGoogle Scholar
  42. 42.
    Zheng L, Wang W, Ni J et al (2017) Role of autophagy in tumor necrosis factor-alpha-induced apoptosis of osteoblast cells. J Investig Med 65:1014–1020CrossRefGoogle Scholar
  43. 43.
    Kim TH, Stone M, Payne U et al (2005) Cartilage biomarkers in ankylosing spondylitis: relationship to clinical variables and treatment response. Arthritis Rheum 52:885–891CrossRefGoogle Scholar
  44. 44.
    Pedersen SJ, Sorensen IJ, Garnero P et al (2011) ASDAS, BASDAI and different treatment responses and their relation to biomarkers of inflammation, cartilage and bone turnover in patients with axial spondyloarthritis treated with TNFalpha inhibitors. Ann Rheum Dis 70:1375–1381CrossRefGoogle Scholar
  45. 45.
    Gudmann NS, Munk HL, Christensen AF et al (2016) Chondrocyte activity is increased in psoriatic arthritis and axial spondyloarthritis. Arthritis Res Ther 18:141CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Medizinische Klinik 3, Rheumatologie und ImmunologieUniversitätsklinikum ErlangenErlangenDeutschland

Personalised recommendations