Advertisement

Zeitschrift für Rheumatologie

, Volume 76, Issue 8, pp 656–663 | Cite as

Anatomie und Immunologie des Auges

  • U. Pleyer
  • D. Pohlmann
Leitthema

Zusammenfassung

Das Auge verfügt über alle Mechanismen, die zur Erkennung und Prozessierung (afferente Immunreaktion) sowie adäquaten Initiierung einer (efferenten) Immunantwort notwendig sind. An der afferenten Reaktion können neben den typischen antigenprozessierenden Zellen auch ortsständige Zellen (Gliazellen, retinales Pigmentepithel) beteiligt sein. Für die efferente Reaktion existiert ein komplexes, regulatives System, das zelluläre und humorale Mechanismen einschließt und wesentlich durch Oberflächenmoleküle bestimmt wird. Zudem ist die okuläre Umgebung reich an immunsuppressiven Molekülen, die zur Regulierung der Immunzellen beitragen. Die Anpassung der anatomischen und biochemischen Mechanismen zur Schaffung einer immunprivilegierten Mikroumgebung macht dieses Sinnesorgan einzigartig. Mit diesem Beitrag sollen die Besonderheiten des Auges und ein Bezug zu häufigen okularen Manifestationen bei rheumatologischen Erkrankungen hergestellt werden.

Schlüsselwörter

Immunprivileg Pathogenese Immunreaktion Immunantwort Rheumatologische Erkrankungen 

Anatomy and immunology of the eye

Abstract

The eye has all the mechanisms necessary for detection and processing (afferent immune reaction) as well as adequate initiation of an (efferent) immune response. Apart from the typical antigen-processing cells, locally present elements (e.g. glial cells and retinal pigment epithelium) can also be involved in the afferent reaction. For the efferent mechanisms a complex regulative system exists, which includes cellular and humoral responses and is essentially determined by surface molecules. In addition, the ocular environment is rich in immunosuppressive molecules that contribute to the regulation of immune cells. The adaptation of the anatomical and biochemical mechanisms for the creation of an immune-privileged microenvironment makes this sense organ unique. The purpose of this article is to highlight the specific features of the eye and to establish a reference to frequent ocular manifestations in rheumatic diseases.

Keywords

Immune privilege Pathogenesis Immune reaction Immune response Rheumatic diseases 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

U. Pleyer und D. Pohlmann geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Alevi D, Perry HD, Wedel A, Rosenberg E, Alevi L, Donnenfeld ED (2017) Effect of sleep position on the ocular surface. Cornea 36(5):567–571CrossRefPubMedGoogle Scholar
  2. 2.
    Barabino S, Chen Y, Chauhan SK, Dana MR (2012) Ocular surface immunity: homeostatic mechanisms and their disruption in dry eye disease. Prog Retin Eye Res 31:271–285CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Caspi R (2008) Autoimmunity in the immune privileged eye: pathogenic and regulatory T cells. Immunol Res 42(1–3):41–50CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Choi W, Li Z, Oh HJ, Im SK, Lee SH, Park SH, You IC, Yoon KC (2012) Expression of CCR5 and its ligands CCL3, -4, and -5 in the tear film and ocular surface of patients with dry eye disease. Curr Eye Res 37:12–17CrossRefPubMedGoogle Scholar
  5. 5.
    Chotikavanich S, de Paiva CS, de Li Q, Chen JJ, Bian F, Farley WJ, Pflugfelder SC (2009) Production and activity of matrix metalloproteinase-9 on the ocular surface increase in dysfunctional tear syndrome. Invest Ophthalmol Vis Sci 50:3203–3209CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    De Paiva CS, Raince JK, McClellan AJ, Shanmugam KP, Pangelinan SB, Volpe EA, Corrales RM, Farley WJ, Corry DB, Li DQ, Pflugfelder SC (2011) Homeostatic control of conjunctivalmucosal goblet cells by NKT-derived IL-13. Mucosal Immunol 4:397–408CrossRefPubMedGoogle Scholar
  7. 7.
    Gorbet M, Postnikoff C, Williams S (2015) The noninflammatory phenotype of neutrophils from the closed-eye environment: a flow Cytometry analysis of receptor expression. Invest Ophthalmol Vis Sci 56(8):4582–4591CrossRefPubMedGoogle Scholar
  8. 8.
    Gregerson DS, Heuss ND, Lew KL, McPherson S, Ferrington DA (2007) Interaction of retinal pigmented epithelial cells and CD4 T cells leads to T‑cell anergy. Invest Ophthalmol Vis Sci 48:4654–4663CrossRefPubMedGoogle Scholar
  9. 9.
    Knop N, Knop E (2010) Regulation of the inflammatory component in chronic dry eye disease by the eye associated lymphoid tissue (EALT). Dev Ophthalmol 45:23–39CrossRefPubMedGoogle Scholar
  10. 10.
    Kovacs L, Marczinovits I, Gyorgy A, Toth GK, Dorgai L, Pal J, Molnar J, Pokorny G (2005) Clinical associations of autoantibodies to human muscarinic acetylcholine receptor 3 in primary Sjogren’s syndrome. Rheumatology (Oxford) 44:1021–1025CrossRefGoogle Scholar
  11. 11.
    Luo L, Li DQ, Doshi A, Farley W, Corrales RM, Pflugfelder SC (2004) Experimental dry eye stimulates production of inflammatory cytokines and MMP-9 and activates MAPK signaling pathways on the ocular surface. Invest Ophthalmol Vis Sci 45:4293–4301CrossRefPubMedGoogle Scholar
  12. 12.
    McCartney-Francis NL, Mizel DE, Frazier-Jessen M, Kulkarni AB, McCarthy JB, Wahl SM (1997) Lacrimal gland inflammation is responsible for ocular pathology in TGF-beta 1 null mice. Am J Pathol 151:1281–1288PubMedPubMedCentralGoogle Scholar
  13. 13.
    Medawar PB (1984) Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol 29(1):58–69Google Scholar
  14. 14.
    Mochizuki M, Sugita S, Kamoi K (2013) Immunological homeostasis of the eye. Prog Retin Eye Res 33:10–27CrossRefPubMedGoogle Scholar
  15. 15.
    Pleyer U (2016) Immunologie des Trockenen Auges. In: Kunert S, Sickenberger W, Brewitt H (Hrsg) Trockenes Auge. Kaden, Heidelberg, S 33–41Google Scholar
  16. 16.
    Potvin R, Makari S, Rapuano CJ (2015) Tear film osmolarity and dry eye disease: a review of the literature. Clin Ophthalmol 9:2039–2047CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Qin B, Wang J, Yang Z, Yang M, Ma N, Huang F, Zhong R (2015) Epidemiology of primary Sjögren’s syndrome: a systematic review and meta-analysis. Ann Rheum Dis 74(11):1983–1989CrossRefPubMedGoogle Scholar
  18. 18.
    Redfern RL, McDermott AM (2010) Toll-like receptors in ocular surface disease. Exp Eye Res 90:679–687CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Redfern RL, Barabino S, Baxter J, Lema C, McDermott AM (2015) Dry eye modulates the expression of toll-like receptors on the ocular surface. Exp Eye Res 134:80–89CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Reinoso R, Calonge M, Castellanos E, Martino M, Fernandez I, Stern ME, Corell A (2011) Differential cell proliferation, apoptosis, and immune response in healthy and evaporative-type dry eye conjunctival epithelia. Invest Ophthalmol Vis Sci 52:4819–4828CrossRefPubMedGoogle Scholar
  21. 21.
    Reitmeir P, Linkohr B, Heier M, Molnos S, Strobl R, Schulz H, Breier M, Faus T, Küster DM, Wulff A, Grallert H, Grill E, Peters A, Graw J (2016) Common eye diseases in older adults of southern Germany: results from the KORA-Age study. Age Ageing. doi: 10.1093/ageing/afw234 PubMedCentralGoogle Scholar
  22. 22.
    Schaumburg CS, Siemasko KF, de Paiva CS, Wheeler LA, Niederkorn JY, Pflugfelder SC, Stern ME (2011) Ocular surface antigen presenting cells are necessary for autoreactive T cell-mediated experimental autoimmune lacrimal keratoconjunctivitis. J Immunol 187:3653–3662CrossRefPubMedGoogle Scholar
  23. 23.
    Shechter R, London A, Schwartz M (2013) Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat Rev Immunol 3(3):206–218CrossRefGoogle Scholar
  24. 24.
    Singh AG, Singh S, Matteson EL (2016) Rate, risk factors and causes of mortality in patients with Sjögren’s syndrome: a systematic review and meta-analysis of cohort studies. Rheumatology (Oxford) 55(3):450–460Google Scholar
  25. 25.
    Stern ME, Gao J, Schwalb TA, Ngo M, Tieu DD, Chan C, Reis BL, Whitcup SM, Thompson D, Smith JA (2002) Conjunctival T‑cell subpopulations in Sjögren’s and non-Sjögren’s patients with dry eye. Invest Ophthalmol Vis Sci 43:2609–2614PubMedGoogle Scholar
  26. 26.
    Stern ME, Schaumburg CS, Siemasko KF, Gao J, Wheeler LA, Gruppe DA, De Paiva CS, Calder VL, Calonge M, Niederkorn JY, Pflugfelder SC (2012) Autoantibodies contribute to the immunopathogenesis of experimental dry eye disease. Invest Ophthalmol Vis Sci 53:2062–2075CrossRefPubMedGoogle Scholar
  27. 27.
    Stern ME, Schaumburg CS, Pflugfelder SC (2013) Dry eye as a mucosal autoimmune disease. Intern Rev Immunol 32:19–41CrossRefGoogle Scholar
  28. 28.
    Steven P (2014) Pathophysiologie des Tränenfilms. In: Pleyer U (Hrsg) Entzündliche Augenerkrankungen. Springer, Berlin HeidelbergGoogle Scholar
  29. 29.
    Steven P, Gebert A (2009) Conjunctiva-associated lymphoid tissue – current knowledge, animal models and experimental prospects. Ophthalmic Res 42:2–8CrossRefPubMedGoogle Scholar
  30. 30.
    Zhang X, Chen W, de Paiva CS, Volpe EA, Gandhi NB, Farley WJ, Li DQ, Stern ME, Pflugfelder SC (2011) Desiccating stress induces CD4+ T‑cell-mediated Sjogren’s syndrome-like corneal epithelial apoptosis via activation of the extrinsic apoptotic pathway by interferon-gamma. Am J Pathol 9:1807–1814CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  1. 1.Universitäts-Augenklinik, Uveitis ZentrumCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinDeutschland

Personalised recommendations