Zeitschrift für Rheumatologie

, Volume 76, Issue 5, pp 451–457 | Cite as

Altered gut microbiota in RA: implications for treatment

  • Y. Kang
  • Y. Cai
  • X. Zhang
  • X. Kong
  • J. SuEmail author


Rheumatoid arthritis (RA) is an autoimmune disease with progressive joint disorder. The complex interplay of genetic and environmental influences is important for the development of the disease. A growing body of evidence has shed light on the association of dysbiosis of gut microbiota with RA. Certain gut microbial strains have been shown to inhibit or attenuate immune responses in RA experimental models, suggesting that specific species among intestinal commensal bacteria may play either a pathogenic or a protective role in the development of RA. Oral intake of probiotics/prebiotics can therefore represent a therapeutic approach for RA treatment. However, the relevant scientific work has only just begun, and the available data in this field remain limited. Fortunately, utilization of new sequencing technologies allows expanded research on the association of intestinal bacterial flora and human diseases to be attempted. In this review, we summarize the role of gut microbiota in RA progression and address how specific bacterial strains regulate the immune response in disease process. Probiotics/prebiotics in the treatment of RA is also discussed.


Gut microbiota dysbiosis Autoimmune disorder Rheumatoid arthritis Biomarkers ​Probiotic therapy 

Darmmikrobiota und rheumatoide Arthritis: von der Pathogenese zu neuen therapeutischen Strategien


Die rheumatoide Arthritis (RA) ist eine Autoimmunkrankheit mit progressiver Gelenkbeteiligung. Das komplexe Wechselspiel zwischen genetischen und Umwelteinflüssen ist für die Entstehung der Erkrankung von Bedeutung. Zunehmende Evidenz gibt es zum Verständnis des Zusammenhangs einer Dysbiose der Darmmikrobiota und RA. Bestimmte Stämme von Darmmikroorganismen hemmen oder schwächen nachgewiesenermaßen die Immunantwort bei experimentellen RA-Modellen ab, was darauf hinweist, dass bestimmte Spezies bei den kommensalen Darmbakterien entweder eine pathogene oder eine protektive Rolle bei der Entstehung der RA spielen könnten. Die orale Zufuhr von Pro-/Präbiotika kann daher einen therapeutischen Ansatz bei der RA-Behandlung darstellen. Allerdings steckt die entscheidende wissenschaftliche Forschung noch in den Anfängen, und die verfügbaren Daten in diesem Bereich sind begrenzt. Der Einsatz neuer Sequenzierungstechnologien ermöglicht den Versuch einer ausgedehnten Untersuchung des Zusammenhangs zwischen der intestinalen Bakterienflora und menschlichen Erkrankungen. In der vorliegenden Arbeit wird eine Übersicht über die Bedeutung der Darmmikrobiota bei RA-Progression gegeben und erörtert, auf welche Weise spezifische Bakterienstämme die Immunantwort im Krankheitsprozess regulieren. Zur Behandlung der RA werden auch Pro-/Präbiotika diskutiert.


Dysbiose der Darmmikrobiota Autoimmune Störung Rheumatoide Arthritis Biomarker Probiotische Therapie 


Compliance with ethical guidelines

Conflict of interest

Y. Kang, Y. Cai, X. Zhang, X. Kong, and J. Su declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D et al (2015) The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med 21:895–905CrossRefPubMedGoogle Scholar
  2. 2.
    Web M (2000) Accessed 23 November 2016
  3. 3.
    Korczowska I (2014) Rheumatoid arthritis susceptibility genes: An overview. World J Orthop 5:544–549CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361:512–519CrossRefPubMedGoogle Scholar
  5. 5.
    Salminen S, Bouley C, Boutron-Ruault MC, Cummings JH, Franck A, Gibson GR et al (1998) Functional food science and gastrointestinal physiology and function. Br J Nutr 80(Suppl 1):147–171CrossRefGoogle Scholar
  6. 6.
    McCulloch J, Lydyard PM, Rook GA (1993) Rheumatoid arthritis: how well do the theories fit the evidence? Clin Exp Immunol 92:1–6CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Peltonen R, Nenonen M, Helve T, Hanninen O, Toivanen P, Eerola E (1997) Faecal microbial flora and disease activity in rheumatoid arthritis during a vegan diet. Br J Rheumatol 36:64–68CrossRefPubMedGoogle Scholar
  8. 8.
    Malin M, Verronen P, Mykkanen H, Salminen S, Isolauri E (1996) Increased bacterial urease activity in faeces in juvenile chronic arthritis: evidence of altered intestinal microflora? Br J Rheumatol 35:689–694CrossRefPubMedGoogle Scholar
  9. 9.
    Eerola E, Mottonen T, Hannonen P, Luukkainen R, Kantola I, Vuori K et al (1994) Intestinal flora in early rheumatoid arthritis. Br J Rheumatol 33:1030–1038CrossRefPubMedGoogle Scholar
  10. 10.
    Sewell KL, Trentham DE (1993) Pathogenesis of rheumatoid arthritis. Lancet 341:283–286CrossRefPubMedGoogle Scholar
  11. 11.
    Arthritis Foundation. Retrieved via Microsoft Internet Express; June. Accessed: 23 November 2016
  12. 12.
    McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365:2205–2219CrossRefPubMedGoogle Scholar
  13. 13.
    Raychaudhuri S, Sandor C, Stahl EA, Freudenberg J, Lee HS, Jia X et al (2012) Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat Genet 44:291–296CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K et al (2014) Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506:376–381CrossRefPubMedGoogle Scholar
  15. 15.
    McInnes IB, Schett G (2007) Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 7:429–442CrossRefPubMedGoogle Scholar
  16. 16.
    Viatte S, Plant D, Raychaudhuri S (2013) Genetics and epigenetics of rheumatoid arthritis. Nat Rev Rheumatol 9:141–153CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Pérez-Maceda B, López-Bote JP, Langa C, Bernabeu C (1991) Antibodies to dietary antigens in rheumatoid arthritis – possible molecular mimicry mechanism. Clin Chimica Acta 203:153–165CrossRefGoogle Scholar
  18. 18.
    Tiwana H, Wilson C, Walmsley RS, Wakefield AJ, Smith MSN, Cox NL et al (1997) Antibody responses to gut bacteria in ankylosing spondylitis, rheumatoid arthritis, Crohn’s disease and ulcerative colitis. Rheumatol Int 17:11–16CrossRefPubMedGoogle Scholar
  19. 19.
    Danning CL, Illei GG, Boumpas DT (1998) Vasculitis associated with primary rheumatologic diseases. Curr Opin Rheumatol 10:58–65CrossRefPubMedGoogle Scholar
  20. 20.
    Chen J, Wright K, Davis JM, Jeraldo P, Marietta EV, Murray J et al (2016) An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med 8:1–14CrossRefGoogle Scholar
  21. 21.
    Gomez A, Luckey D et al (2012) Loss of sex and age driven differences in the gut Microbiome characterize arthritis-susceptible *0401 mice but not arthritis-resistant *0402 mice. PLOS ONE 7(4):1215. doi: 10.1371/journal.pone.0036095 Google Scholar
  22. 22.
    Toivanen P, Vartiainen S, Jalava J, Luukkainen R, Möttönen T, Eerola E et al (2002) Intestinal anaerobic bacteria in early rheumatoid arthritis (RA). Arthritis Res Ther 4:1Google Scholar
  23. 23.
    Vaahtovuo J, Munukka E, Korkeamäki M, Luukkainen R, Toivanen P (2008) Fecal microbiota in early rheumatoid arthritis. J Rheumatol 35:1500–1505PubMedGoogle Scholar
  24. 24.
    Miu GN, Noskov SM (2011) Colonic microbial biocenosis in rheumatoid arthritis. Klin Med (Mosk) 89:45–48Google Scholar
  25. 25.
    Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291:881–884CrossRefPubMedGoogle Scholar
  26. 26.
    Noujaim JC, Andreatti Filho RL, Lima ET, Okamoto AS, Amorim RL, Neto RT (2008) Detection of CD4+ and CD8+ lymphocytes in the intestine of broiler chicks treated with Lactobacillus spp. and challenged with Salmonella enterica serovar Enteritidis. Poult Sci 87:927–933CrossRefPubMedGoogle Scholar
  27. 27.
    Petersenc ER, Claesson MH, Schmidt EG, Jensen SS, Ravn P, Olsen J et al (2012) Consumption of probiotics increases the effect of regulatory T cells in transfer colitis. Inflamm Bowel Dis 18:131–142CrossRefGoogle Scholar
  28. 28.
    Liu X, Zou Q, Zeng B, Fang Y, Wei H (2013) Analysis of fecal lactobacillus community structure in patients with early rheumatoid arthritis. Curr Microbiol 67:170–176CrossRefPubMedGoogle Scholar
  29. 29.
    Simelyte E, Rimpiläinen M, Zhang X, Toivanen P (2003) Role of peptidoglycan subtypes in the pathogenesis of bacterial cell wall arthritis. Ann Rheum Dis 62:976–982CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Khan MT, Duncan SH, Stams AJ, van Dijl JM, Flint HJ, Harmsen HJ (2012) The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases. Isme J 6:1578–1585CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Olhagen B, Mansson I (1968) Intestinal Clostridium perfringens in rheumatoid arthritis and other collagen diseases. Acta Med Scand 184:395–402CrossRefPubMedGoogle Scholar
  32. 32.
    Boettiger LE, Malmquist E, Olhagen B (1964) Serum protein-bound carbohydrates in rheumatic disease. I. Results of the differentiated analyses in various rheumatic disorders. Ann Rheum Dis 23:489–494CrossRefPubMedGoogle Scholar
  33. 33.
    Shinebaum R, Neumann VC, Cooke EM, Wright V (1987) Comparison of faecal florae in patients with rheumatoid arthritis and controls. Br J Rheumatol 26:329–333CrossRefPubMedGoogle Scholar
  34. 34.
    Willis AT (1969) Clostridia of wound infections. Butterworths & Co.Ltd, London, pp 41–156Google Scholar
  35. 35.
    Olhagen B, Månsson I (1968) Intestinal clostridium perfringens in rheumatoid arthritis and other collagen diseases1. Acta Med Scand 184:395–402CrossRefPubMedGoogle Scholar
  36. 36.
    Severijnen AJ, Kool J, Swaak AJ, Hazenberg MP (1990) Intestinal flora of patients with rheumatoid arthritis: induction of chronic arthritis in rats by cell wall fragments from isolated Eubacterium aerofaciens strains. Br J Rheumatol 29:433–439CrossRefPubMedGoogle Scholar
  37. 37.
    Severijnen AJ, van Kleef R, Grandia AA, van der Kwast TH, Hazenberg MP (1991) Histology of joint inflammation induced in rats by cell wall fragments of the anaerobic intestinal bacterium Eubacterium aerofaciens. Rheumatol Int 11:203–208CrossRefPubMedGoogle Scholar
  38. 38.
    Moore WE, Holdeman LV (1974) Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol 27:961–979PubMedPubMedCentralGoogle Scholar
  39. 39.
    Benno Y, Endo K, Mizutani T, Namba Y, Komori T, Mitsuoka T (1989) Comparison of fecal microflora of elderly persons in rural and urban areas of Japan. Appl Environ Microbiol 55:1100–1105PubMedPubMedCentralGoogle Scholar
  40. 40.
    Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C et al (2013) Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife 2:e01202CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Winter SE, Winter MG, Xavier MN, Thiennimitr P, Poon V, Keestra AM et al (2013) Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 339:708–711CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y et al (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331:337–341CrossRefPubMedGoogle Scholar
  43. 43.
    Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA et al (2011) The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332:974–977CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Abdollahi-Roodsaz S, Joosten LA, Koenders MI, Devesa I, Roelofs MF, Radstake TR et al (2008) Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J Clin Investig 118:205–216CrossRefPubMedGoogle Scholar
  45. 45.
    Wu HJ, Ivanov II, Darce J, Hattori K, Shima T, Umesaki Y et al (2010) Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32:815–827CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Brisbin JT, Gong J, Parvizi P, Sharif S (2010) Effects of lactobacilli on cytokine expression by chicken spleen and cecal tonsil cells. Clin Vaccine Immunol 17:1337–1343CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ou CC, Lin SL, Tsai JJ, Lin MY (2011) Heat-killed lactic acid bacteria enhance Immunomodulatory potential by skewing the immune response toward th1 polarization. J Food Sci 76:M260–M7CrossRefPubMedGoogle Scholar
  48. 48.
    Sierra S, Lara-Villoslada F, Sempere L, Olivares M, Boza J, Xaus J (2010) Intestinal and immunological effects of daily oral administration of Lactobacillus salivarius CECT5713 to healthy adults. Anaerobe 16:195–200CrossRefPubMedGoogle Scholar
  49. 49.
    Lee JH, Valeriano VD, Shin YR, Chae JP, Kim GB, Ham JS et al (2012) Genome sequence of Lactobacillus mucosae LM1, isolated from piglet feces. J Bacteriol 194:4766CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Peltonen R, Nenonen M, Helve T, Hänninen O, Toivanen P, Eerola E (1997) Faecal microbial flora and disease activity in rheumatoid arthritis during a vegan diet. Br J Rheumatol 36:64–68CrossRefPubMedGoogle Scholar
  51. 51.
    Nenonen MT, Helve TA, Rauma AL, Hänninen OO (1998) Uncooked, lactobacilli-rich, vegan food and rheumatoid arthritis. Br J Rheumatol 37:274–281CrossRefPubMedGoogle Scholar
  52. 52.
    Pineda ML, Thompson SF, Summers K, De LF, Pope J, Reid G (2011) A randomized, double-blinded, placebo-controlled pilot study of probiotics in active rheumatoid arthritis. Med Sci Monit 17:347–354Google Scholar
  53. 53.
    Vaghef-Mehrabany E, Alipour B, Homayouni-Rad A, Sharif SK, Asghari-Jafarabadi M, Zavvari S (2014) Probiotic supplementation improves inflammatory status in patients with rheumatoid arthritis. Nutrition 30:430–435CrossRefPubMedGoogle Scholar
  54. 54.
    Kim JE, Chang SC, Kim GC, Hwang W, Hwang JS, Hwang SM et al (2015) Lactobacillus helveticus suppresses experimental rheumatoid arthritis by reducing inflammatory T cell responses. J Funct Foods 13:350–362CrossRefGoogle Scholar
  55. 55.
    Vecchi ED, Drago L (2006) Lactobacillus sporogenes or Bacillus coagulans: Misidentification or mislabelling? Int J Probiotics Prebiotics 1:3–10Google Scholar
  56. 56.
    Mandel DR, Eichas K, Holmes J (2010) Bacillus coagulans: a viable adjunct therapy for relieving symptoms of rheumatoid arthritis according to a randomized, controlled trial. BMC Complement Altern Med 10:1–7CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Le Hyronimus M, Urdaci (1998) Coagulin, a bacteriocin-like inhibitory substance produced by Bacillus coagulans I 4. J Appl Microbiol 85:42–50CrossRefPubMedGoogle Scholar
  58. 58.
    Abhari K, Shekarforoush SS, Hosseinzadeh S, Nazifi S, Sajedianfard J, Eskandari MH (2016) The effects of orally administeredBacillus coagulansand inulin on prevention and progression of rheumatoid arthritis in rats. Food Nutr Res 60:1–8CrossRefGoogle Scholar
  59. 59.
    Zamani B, Golkar HR, Farshbaf S, Emadi-Baygi M, Tajabadi-Ebrahimi M, Jafari P et al (2016) Clinical and metabolic response to probiotic supplementation in patients with rheumatoid arthritis: a randomized, double-blind, placebo-controlled trial. Int J Rheum Dis 19(9):869. doi: 10.1111/1756-185X.12888 CrossRefPubMedGoogle Scholar
  60. 60.
    Mcdougall J, Bruce B, Spiller G, Westerdahl J, Mcdougall M (2002) Effects of a very low-fat, vegan diet in subjects with rheumatoid arthritis. J Altern Complement Med 8:71–75CrossRefPubMedGoogle Scholar
  61. 61.
    Kroker GFSRM, Marshall RT et al (1984) Fasting and rheumatoid arthritis: a multicenter study. Clin Ecol 2(3):137–144Google Scholar
  62. 62.
    Panush RS, Stroud RM, Webster EM (1986) Food-induced (allergic) arthritis. Inflammatory arthritis exacerbated by milk. Arthritis Rheumatol 29:220–226CrossRefGoogle Scholar
  63. 63.
    Sundqvist T, Lindström F, Magnusson KE, Sköldstam L, Stjernström I, Tagesson C (1982) Influence of fasting on intestinal permeability and disease activity in patients with rheumatoid arthritis. Scand J Rheumatol 11:33–38CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Medical FacultyKunming University of Science and TechnologyKunming, YunnanChina

Personalised recommendations