Zeitschrift für Rheumatologie

, Volume 73, Issue 5, pp 415–419

Chondrokalzinose

Klinische Bedeutung von intraartikulären Kalziumphosphatkristallen
Leitthema

Zusammenfassung

Kalziumpyrophosphatdihydrat(CPPD)-Kristalle sind die klassischen Kristalle der Pseudogicht. Ihr Vorkommen ist jedoch auch bei Patienten mit Arthrose (Osteoarthritis, OA) beschrieben. Neben den CPPD-Kristallen wird eine weitere Gruppe von Kalziumphosphatmineralisationen in Gelenkknorpel, -flüssigkeit und -schleimhaut bei OA gefunden: basische Kalziumphosphate (BCP), bestehend aus Hydroxylapatit, Trikalziumphosphat und Oktakalziumphosphat. Zwar können CPPD-Kristalle auch bei OA nachgewiesen werden, die Assoziation zwischen BCP-Kristallen und OA ist aber deutlich größer. In verschiedene Untersuchungen waren BCP regelhaft bei OA nachzuweisen, und ihre Präsenz korrelierte mit der Schwere der arthrotischen Veränderung. Das Problem liegt in der Identifizierung der BCP-Kristalle, da deren mikrokristalline Struktur nicht lichtmikroskopisch nachweisbar ist. Die Bedeutung der BCP-Kristalle bei Arthrose ist nicht vollständig verstanden. Die BCP-Mineralisationen werden häufig in der Nachbarschaft von hypertrophen Chondrozyten gefunden. Und tatsächlich konnte gezeigt werden, dass die Mineralisation des hyalinen Gelenkknorpels abhängig von der hypertrophen Differenzierung der Chondrozyten ist. Die hypertrophen OA-Chondrozyten nehmen dabei ähnliche Eigenschaften wie die Chondrozyten in der Wachstumsfuge an. Dort ist der Mechanismus der Chondrozytenhypertrophie und Matrixmineralisation im Rahmen der enchondralen Ossifikation gut bekannt. Neuere Untersuchungen belegen, dass die Mineralisation des hyalinen Gelenkknopels bei Arthrose ein regelhafter Vorgang ist, der mit der hypertrophen Differenzierung der Chondrozyten streng verbunden ist. Die Mineralisation ist dabei nicht Ausdruck einer besonders schweren Verlaufsform der OA, sondern ein grundsätzlich auftretendes Phänomen.

Schlüsselwörter

Arthrose Kristalle Chondrozyten Knorpel Mineralisation 

Chondrocalcinosis

Clinical impact of intra-articular calcium phosphate crystals

Abstract

Calcium pyrophosphate dihydrate (CPPD) crystals are known to cause acute attacks of pseudogout in joints but crystal deposition has also been reported to be associated with osteoarthritis (OA). Aside from CPPD crystals, basic calcium phosphates (BCPs), consisting of carbonate-substituted hydroxyapatite (HA), tricalcium phosphate and octacalcium phosphate, have been found in synovial fluid, synovium and cartilage of patients with OA. Although CPPD crystals have been found to be associated with OA and are an important factor in joint disease, this has also recently been associated with a genetic defect. However, according to the most recent findings, the association of BCP crystals, such as apatite with OA is much stronger, as their presence significantly correlates with the severity of cartilage degeneration. Identification of BCP crystals in OA joints remains problematic due to a lack of simple and reliable methods of detection. The clinical and pathological relevance of cartilage mineralization in patients with OA is not completely understood. It is well established that mineralization of articular cartilage is often found close to hypertrophic chondrocytes. A significant correlation between the expression of type X collagen, a marker for chondrocyte hypertrophy and cartilage mineralization was observed. In the process of endochondral ossification, the link between hypertrophy and matrix mineralization is particularly well described. Hypertrophic chondrocytes in OA cartilage and at the growth line share certain features, not only hypertrophy but also a capability to mineralize the matrix. Recent data indicate that chondrocyte hypertrophy is a key factor in articular cartilage mineralization strongly linked to OA and does not characterize a specific subset of OA patients, which has important consequences for therapeutic strategies for OA.

Keywords

Osteoarthritis Crystals Chondrocytes Cartilage Mineralization 

Literatur

  1. 1.
    Zitnan D, Sit’Aj S (1963) Chondrocalcinosis in articularis section. Clinical and radiological study. Ann Rheum Dis 2:142–152CrossRefGoogle Scholar
  2. 2.
    Zhang W, Doherty M, Bardin T et al (2011) European League Against Rheumatism recommendations for calcium pyrophosphate deposition. Part I: terminology and diagnosis. Ann Rheum Dis 70:563–570PubMedCrossRefGoogle Scholar
  3. 3.
    Fuerst M, Lammers L, Schäfer F et al (2010) Investigation of calcium crystals in OA knees. Rheumatol Int 30:623–631PubMedCrossRefGoogle Scholar
  4. 4.
    Ryan LM, McCarthy DJ (1997) Calcium pyrophosphate crystal deposition disease, pseudogout and articular chondrocalcinosis. In: Koopman WJ (Hrsg) Arthritis and allied conditions, 13. Aufl. Williams & Wilkins, Baltimore, S 2103–2105Google Scholar
  5. 5.
    Derfus BA, Kurian JB, Butler JJ et al (2002) The high prevalence of pathologic calcium crystals in preoperative knees. J Rheumatol 29:570–574PubMedGoogle Scholar
  6. 6.
    Halverson PB, McCarty DJ (1986) Patterns of radiographic abnormalities associated with basic calcium phosphate and calcium pyrophosphate dihydrate crystal deposition in the knee. Ann Rheum Dis 45:603–605PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Boivin G, Lager R (1983) An ultrastructural study of articular chondrocalcinosis in cases of knee osteoarthritis. Virchows Arch A Pathol Anat Histopathol 400:13–29PubMedCrossRefGoogle Scholar
  8. 8.
    Sokoloff L, Varma AA (1988) Chondrocalcinosis in surgically resected joints. Arthritis Rheum 31:750–756PubMedCrossRefGoogle Scholar
  9. 9.
    Abreu M, Johnson K, Chung CB et al (2004) Calcification in calcium pyrophosphate dihydrate (CPPD) crystalline deposits in the knee: anatomic, radiographic, MR imaging, and histologic study in cadavers. Skeletal Radiol 33:392–398PubMedCrossRefGoogle Scholar
  10. 10.
    Thouverey C, Bechkoff G, Pikula S, Buchet R (2009) Inorganic pyrophosphate as a regulator of hydroxyapatite or calcium pyrophosphate dihydrate mineral deposition by matrix vesicles. Osteoarthritis Cartilage 17:64–72PubMedCrossRefGoogle Scholar
  11. 11.
    Derfus B, Kranendonk S, Camacho N et al (1998) Human osteoarthritic cartilage matrix vesicles generate both calcium pyrophosphate dihydrate and apatite in vitro. Calcif Tissue Int 63:258–262PubMedCrossRefGoogle Scholar
  12. 12.
    Derfus BA, Kurtin SM, Camacho NP et al (1996) Comparison of matrix vesicles derived from normal and osteoarthritic human articular cartilage. Connect Tissue Res 35:337–342PubMedCrossRefGoogle Scholar
  13. 13.
    Cheung HS, Kurup IV, Sallis JD, Ryan LM (1996) Inhibition of calcium pyrophosphate dihydrate crystal formation in articular cartilage vesicles and cartilage by phosphocitrate. J Biol Chem 271:28082–28085PubMedCrossRefGoogle Scholar
  14. 14.
    Russell RG, Rogers MJ (1999) Biphosphonates: from the laboratory to the clinic and back again. Bone 25:97–106PubMedCrossRefGoogle Scholar
  15. 15.
    Hirose J, Ryan LM, Masuda I (2002) Up-regulated expression of cartilage intermediate-layer protein and ANK in articular hyaline cartilage from patients with calcium pyrophosphate dihydrate crystal deposition disease. Arthritis Rheum 46:3218–3229PubMedCrossRefGoogle Scholar
  16. 16.
    Ho AM, Johnson MD, Kingsley DM (2000) Role of the mouse ank gene in control of tissue calcification and arthritis. Science 289:265–270PubMedCrossRefGoogle Scholar
  17. 17.
    Pendleton A, Johnson MD, Hughes A (2002) Mutations in ANKH cause chondrocalcinosis. Am J Hum Genet 71:933–940PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    St Hilaire C, Ziegler SG, Markello TC et al (2011) NT5E mutations and arterial calcifications. N Engl J Med 364:432–442CrossRefGoogle Scholar
  19. 19.
    Bertrand J, Nitschke Y, Fuerst M et al (2012) Decreased levels of nucleotide pyrophosphatase phosphodiesterase 1 are associated with cartilage calcification in osteoarthritis and trigger osteoarthritic changes in mice. Ann Rheum Dis 71:1249–1253PubMedCrossRefGoogle Scholar
  20. 20.
    Fuerst M, Bertrand J, Lammers L et al (2009) Calcification of articular cartilage in human osteoarthritis. Arthritis Rheum 60:2694–2703PubMedCrossRefGoogle Scholar
  21. 21.
    Touraine S, Ea HK, Bousson V et al (2013) Chondrocalcinosis of femoro-tibial and proximal tibio-fibular joints in cadaveric specimens: a high-resolution CT imaging study of the calcification distribution. PLoS One 8:e54955PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Molloy ES, Morgan MP, Doherty GA et al (2009) Microsomal prostaglandin E2 synthase 1 expression in basic calcium phosphate crystal-stimulated fibroblasts: role of prostaglandin E2 and the EP4 receptor. Osteoarthritis Cartilage 17:686–692PubMedCrossRefGoogle Scholar
  23. 23.
    Ea HK, Chobaz V, Nguyen C et al (2013) Pathogenic role of basic calcium phosphate crystals in destructive arthropathies. PLoS One 8:e57352PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.MedbalticKielDeutschland
  2. 2.Sektion onkologische und rheumatologische OrthopädieUniversitätsklinikum Schleswig Holstein, Campus KielKielDeutschland

Personalised recommendations