Advertisement

Zeitschrift für Rheumatologie

, Volume 71, Issue 2, pp 127–137 | Cite as

Ätiologie und Management der Gicht

  • B. Pazár Maldonado
  • A. So
CME Weiterbildung · Zertifizierte Fortbildung

Zusammenfassung

Gicht ist eine durch intra- und/oder periartikuläre Einlagerung von Mononatriumuratkristallen verursachte entzündliche Form der Arthritis. Auch Harnsteine können sich bilden, sie kommen aber seltener vor als eine Arthritis. In der Regel manifestiert sich eine Gicht durch rezidivierende Gelenkentzündungen, die mit der Zeit zur Bildung von Tophi und zur Zerstörung des Gelenks führen. Im letzten Jahrzehnt sind signifikante Fortschritte erreicht worden: bei der Erforschung sowohl epidemiologischer als auch genetischer Aspekte von Gicht und Hyperurikämie, aber auch bei der Aufklärung pathogenetischer Mechanismen und bei der Erweiterung des Behandlungsspektrums. Erkenntnisse zur Schlüsselrolle des Interleukin 1 (IL-1) bieten neue therapeutische Perspektiven. Dennoch ist das Management häufig suboptimal: Viele Gichtpatienten werden nicht adäquat behandelt, viele vertragen die bisher verfügbaren Substanzen nicht. Innovative Substanzen stellen interessante neue Optionen dar für Patienten mit schwer zu behandelnder Gicht.

Der englische Originaltext des Beitrags steht auf SpringerLink (unter „Supplemental“) zur Verfügung.

Schlüsselwörter

Hyperurikämie Arthritis Nichtsteroidale antiinflammtorische Substanzen Harnsäure Indometacin 

The etiology and management of gout

Abstract

Gout is an inflammatory arthritis caused by monosodium urate (MSU) crystal deposits in and around the joint. The formation of urinary calculi can also occur in gout, but are less common than arthritis. Gout usually presents with recurrent episodes of joint inflammation, which over time lead to tophus formation and joint destruction. In the last decade, significant advances have been made regarding not only the epidemiology and genetics of gout and hyperuricemia but also the mechanisms of inflammation and treatment of gout. In addition, knowledge concerning the key role of interleukin 1 (IL-1) has provided new therapeutic perspectives. However, the current management of gout is often suboptimal, with many Patienten either not receiving adequate treatment or being unable to tolerate existing treatments. New therapeutic agents provide interesting new options for Patienten with difficult-to-treat gouty arthritis.

The English full-text version of this is available at SpringerLink (under “Supplemental”).

Keywords

Hyperuricemia Arthritis Anti-inflammatory agents, non-steroidal Uric acid Indomethacin 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Supplementary material

393_2012_961_MO1_ESM.pdf (537 kb)
English version of "Ätiologie und Management der Gicht" (PDF 0,5 MB)

Literatur

  1. 1.
    Zhu Y, Pandya BJ, Choi HK (2011) Prevalence of gout and hyperuricemia in the US general population: The National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum 63:3136–3141PubMedCrossRefGoogle Scholar
  2. 2.
    Roddy E, Doherty M (2010) Epidemiology of gout. Arthritis Res Ther 12:223–234PubMedCrossRefGoogle Scholar
  3. 3.
    Graessler J, Graessler A, Unger S et al (2006) Association of the human urate transporter 1 with reduced renal uric acid excretion and hyperuricemia in a German Caucasian population. Arthritis Rheum 54:292–300PubMedCrossRefGoogle Scholar
  4. 4.
    Dehghan A, Kottgen A, Yang Q et al (2008) Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 372:1953–1961PubMedCrossRefGoogle Scholar
  5. 5.
    Kolz M, Johnson T, Sanna S et al (2009) Metaanalysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet 5:e1000504PubMedCrossRefGoogle Scholar
  6. 6.
    Harst P van der, Bakker SJ, Boer RA de et al (2010) Replication of the five novel loci for uric acid concentrations and potential mediating mechanisms. Hum Mol Genet 19:387–395PubMedCrossRefGoogle Scholar
  7. 7.
    Torres R, Macdonald L, Croll SD et al (2009) Hyperalgesia, synovitis, and multiple biomarkers of inflammation are suppressed by IL-1 inhibition in a novel animal model of gouty arthritis. Ann Rheum Dis 68:1602–1608PubMedCrossRefGoogle Scholar
  8. 8.
    Schiltz C, Lioté F, Prudhommeaux F et al (2002) Monosodium urate monohydrate crystal-induced inflammation in vivo: quantitative histomorphometric analysis of cellular events. Arthritis Rheum 46:1643–1650PubMedCrossRefGoogle Scholar
  9. 9.
    Martinon F, Pétrilli V, Mayor A et al (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241PubMedCrossRefGoogle Scholar
  10. 10.
    Martinon F (2010) Mechanisms of uric acid crystal-mediated autoinflammation. Immunol Rev 233:218–232PubMedCrossRefGoogle Scholar
  11. 11.
    Joosten LA, Netea MG, Mylona E et al (2010) Engagement of fatty acids with Toll-like receptor 2 drives interleukin-1β production via the ASC/caspase 1 pathway in monosodium urate monohydrate crystal-induced gouty arthritis. Arthritis Rheum 62:3237–3248PubMedCrossRefGoogle Scholar
  12. 12.
    Wallace SL, Robinson H, Masi AT et al (1977) Preliminary criteria for the classification of the acute arthritis of primary gout. Arthritis Rheum 20:895–900PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang W, Doherty M, Pascual E et al (2006) EULAR evidence based recommendations for gout. Part I: Diagnosis. Report of a task force of the Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann Rheum Dis 65:1301–1311PubMedCrossRefGoogle Scholar
  14. 14.
    Gerster JC, Landry M, Duvoisin B, Rappoport G (1996) Computed tomography of the knee joint as an indicator of intraarticular tophi in gout. Arthritis Rheum 39:1406–1409PubMedCrossRefGoogle Scholar
  15. 15.
    Thiele RG, Schlesinger N (2007) Ultrasonography is a reliable, non-invasive method for diagnosing gout. Rheumatology 46:1116–1121PubMedCrossRefGoogle Scholar
  16. 16.
    Desai MA, Peterson JJ, Garner HW, Kransdorf MJ (2011) Clinical utility of dual-energy CT for evaluation of tophaceous gout. Radiographics 31:1365–1375PubMedCrossRefGoogle Scholar
  17. 17.
    Gerster JC, Landry M, Dufresne L, Meuwly JY (2002) Imaging of tophaceous gout: computed tomography provides specific images compared with magnetic resonance imaging and ultrasonography. Ann Rheum Dis 61:52–54PubMedCrossRefGoogle Scholar
  18. 18.
    Man CY, Cheung IT, Cameron PA, Rainer TH (2007) Comparison of oral prednisolone/paracetamol and oral indomethacin/paracetamol combination therapy in the treatment of acute gout like arthritis: a double-blind, randomized, controlled trial. Ann Emerg Med 49:670–677PubMedCrossRefGoogle Scholar
  19. 19.
    Terkeltaub RA, Furst DE, Bennett K et al (2010) High versus low dosing of oral colchicine for early acute gout flare: Twenty-four-hour outcome of the first multicenter, randomized, double-blind, placebo-controlled, parallel-group, dose-comparison colchicine study. Arthritis Rheum 62:1060–1068PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang W, Doherty M, Bardin T et al (2006) EULAR evidence based recommendations for gout. Part II: Management. Report of a task force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann Rheum Dis 65:1312–1324PubMedCrossRefGoogle Scholar
  21. 21.
    Lioté F (2010) Advances in the proper use of colchicine and adapting dosages in other countries: comment on the article by Terkeltaub et al. Arthritis Rheum 62:3126–3127 (author reply 3127–3128)PubMedCrossRefGoogle Scholar
  22. 22.
    Stamp LK, O’Donnell JL, Zhang M et al (2011) Using allopurinol above the dose based on creatinine clearance is effective and safe in patients with chronic gout, including those with renal impairment. Arthritis Rheum 63:412–421PubMedCrossRefGoogle Scholar
  23. 23.
    Pascual E, Sivera F, Tekstra J, Jacobs J (2009) Crystal arthropathies and septic arthritis. In: EULAR compendium on rheumatic diseases. BMJ, London, pp 132–139Google Scholar
  24. 24.
    Schumacher HR, Becker MA, Lloyd E et al (2009) Febuxostat in the treatment of gout: 5-yr findings of the FOCUS efficacy and safety study. Rheumatology (Oxford) 48:188–194Google Scholar
  25. 25.
    Becker MA, Schumacher HR, Espinoza LR et al (2010) The urate-lowering efficacy and safety of febuxostat in the treatment of the hyperuricemia of gout: the CONFIRMS trial. Arthritis Res Ther 12:R63PubMedCrossRefGoogle Scholar
  26. 26.
    Perez-Ruiz F, Calabozo M, García-Erauskin G et al (2002) Renal underexcretion of uric acid is present in patients with apparent high urinary uric acid output. Arthritis Rheum 47:610–613PubMedCrossRefGoogle Scholar
  27. 27.
    Moolenburgh JD, Reinders MK, Jansen TL (2006) Rasburicase treatment in severe tophaceous gout: a novel therapeutic option. Clin Rheumatol 25:749–752PubMedCrossRefGoogle Scholar
  28. 28.
    Sundy JS, Becker MA, Baraf HS et al (2008) Pegloticase Phase 2 Study Investigators. Reduction of plasma urate levels following treatment with multiple doses of pegloticase (polyethylene glycol-conjugated uricase) in patients with treatment-failure gout: results of a phase II randomized study. Arthritis Rheum 58:2882–2891PubMedCrossRefGoogle Scholar
  29. 29.
    Schlesinger N (2010) New agents for the treatment of gout and hyperuricemia: febuxostat, puricase, and beyond. Curr Rheumatol Rep 12:130–134PubMedCrossRefGoogle Scholar
  30. 30.
    Joosten LA, Netea MG, Fantuzzi G et al (2009) Inflammatory arthritis in caspase 1 gene-deficient mice: contribution of proteinase 3 to caspase 1-independent production of bioactive interleukin-1beta. Arthritis Rheum 60:3651–3662PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • B. Pazár Maldonado
    • 1
  • A. So
    • 1
  1. 1.Department of RheumatologyCentre Hospitalier Universitaire VaudoisLausanneSuisse

Personalised recommendations