Zeitschrift für Rheumatologie

, 68:712

Interleukin-1-Zytokine, Inflammasome, NOD-Signalosome und Autoinflammation

Leitthema

Zusammenfassung

Die Erforschung der Grundlagen hereditärer autoinflammatorischer Syndrome hat große Bedeutung erlangt für das Verständnis und die Therapie von erworbenen IL-1β-assoziierten nichtinfektiösen Entzündungskrankheiten. Im Fokus des Interesses befinden sich makromolekulare zytosolische Komplexe zur Synthese und Aktivierung von Zytokinen der IL-1-Familie: NOD-Signalosome und Inflammasome.

Schlüsselwörter

Interleukin-1-Zytokine Inflammasome NOD-Signalosome  Autoinflammation Hereditäre autoinflammatorische Syndrome 

Abkürzungsliste

ASC

„Apoptosis-associated speck-like protein“

ATP

Adenosintriphosphat

BIR

„Baculovirus inhibitor of apoptosis protein repeat“

CIITA

„Major histocompatibility complex (MHC) class II transactivator“

CAPS

Cryopyrin-assoziiertes periodisches Fiebersyndrom

CARD

Caspasen-rekrutierende Domäne

CINCA

„Chronic infantile neurologic cutaneous and articular syndrome“

FCAS

„Familial cold autoinflammatory syndrome“

FMF

Familiäres Mittelmeerfieber

IL

Interleukin

IPAF

„ICE-protease activating factor“

JNK

Januskinase

MWS

Muckle-Wells-Syndrom

NOD

Nukleotid-bindende Oligomerisierungsdomäne

NLR

„NOD-like receptor“

NACHT

Domäne, welche von NAIP, CIITA, HET-E, TP-1 verwendet wird

NAIP

Neuronales Apoptose-inhibitorisches Protein

NALP

NACHT-LRR-PYD-enthaltendes Protein

NOMID

„Neonatal-onset multisystem inflammatory disease“

PAPA

„Pyogenic arthritis, pyoderma gangrenosum, and acne syndrome“

PRR

„Pattern-recognition receptor“ (Mustererkennungsrezeptor)

PrySpry

„Pry (PTPN13-related protein, Y-linked) and SpIA ryanodine receptor (RyR)-like“

PSTPIP1

Prolin-Serin-Threonin-Phosphatasen-interagierendes Protein 1

PYD

Pyrindomäne

RIP2

Rezeptor-interagierendes Protein 2

SAPHO

Synovitis, Akne, Pustulose, Hyperostose und Osteitis (Syndrom)

ST2

„Signal transduction 2 protein“

TH

T-Helfer-Zelltyp

Interleukin-1 cytokines, inflammasomes, NOD-signalosomes and autoinflammation

Abstract

The understanding of the genetic and immunological basis of human periodic fever syndromes, in particular cryopyrin-associated periodic syndromes (CAPS), has led to important new insights into the pathogenesis of monogenic and complex interleukin-1beta-associated autoinflammatory diseases. Currently the focus of attention is on the nucleotide-binding oligomerization domain (NOD)-like receptors (NLR), which take part in the regulation of the synthesis and maturation of cytokines in the IL-1 families, NOD-signalosomes and inflammasomes.

Keywords

Interleukin-1 cytokines Inflammasomes NOD-signalosomes Autoinflammation Hereditary autoinflammatory syndromes 

Literatur

  1. 1.
    French FMF Consortium (1997) A candidate gene for familial Mediterranean fever. Nat Genet 17:25–31CrossRefGoogle Scholar
  2. 2.
    The International FMF Consortium (1997) Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. The International FMF Consortium. Cell 90:797–807CrossRefGoogle Scholar
  3. 3.
    Hoffman HM, Mueller JL, Broide DH et al (2001) Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet 29:301–305CrossRefPubMedGoogle Scholar
  4. 4.
    Aganna E, Martinon F, Hawkins PN et al (2002) Association of mutations in the NALP3/CIAS1/PYPAF1 gene with a broad phenotype including recurrent fever, cold sensitivity, sensorineural deafness and AA amyloidosis. Arthritis Rheum 46:2445–2452CrossRefPubMedGoogle Scholar
  5. 5.
    Feldmann J, Prieur AM, Quartier P et al (2002) Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet 71:198–203CrossRefPubMedGoogle Scholar
  6. 6.
    Shoham NG, Centola M, Mansfield E et al (2003) Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway. Proc Natl Acad Sci USA 100:13501–13506CrossRefPubMedGoogle Scholar
  7. 7.
    Hawkins PN, Lachmann HJ, McDermott MF (2003) Interleukin-1-receptor antagonist in the Muckle-Wells syndrome. N Engl J Med 348:2583–2584CrossRefPubMedGoogle Scholar
  8. 8.
    Hoffman HM, Rosengren S, Boyle DL et al (2004) Prevention of cold-associated acute inflammation in familial cold autoinflammatory syndrome by interleukin-1 receptor antagonist. Lancet 364:1779–1785CrossRefPubMedGoogle Scholar
  9. 9.
    Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265CrossRefPubMedGoogle Scholar
  10. 10.
    Altomonte L, Zoli A, Mirone L et al (1992) Serum levels of interleukin-1b, tumour necrosis factor-a and interleukin-2 in rheumatoid arthritis. Correlation with disease activity. Clin Rheumatol 11:202–205CrossRefPubMedGoogle Scholar
  11. 11.
    Martinon F, Petrilli V, Mayor A et al (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241CrossRefPubMedGoogle Scholar
  12. 12.
    Sousa AR, Lane SJ, Nakhosteen JA et al (1996) Expression of interleukin-1 beta (IL-1beta) and interleukin-1 receptor antagonist (IL-1ra) on asthmatic bronchial epithelium. Am J Respir Crit Care Med 154:1061–1066PubMedGoogle Scholar
  13. 13.
    Griffin WS, Stanley LC, Ling C et al (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci USA 86:7611–7615CrossRefPubMedGoogle Scholar
  14. 14.
    Coeshott C, Ohnemus C, Pilyavskaya A et al (1999) Converting enzyme-independent release of tumor necrosis factor alpha and IL-1beta from a stimulated human monocytic cell line in the presence of activated neutrophils or purified proteinase 3. Proc Natl Acad Sci USA 96:6261–6266CrossRefPubMedGoogle Scholar
  15. 15.
    Meyer-Hoffert U (2009) Neutrophil-derived serine proteases modulate innate immune responses. Front Biosci 14:3409–3418CrossRefPubMedGoogle Scholar
  16. 16.
    Gabay C, McInnes IB (2009) The biological and clinical importance of the ‚new generation‘ cytokines in rheumatic diseases. Arthritis Res Ther 11:230CrossRefPubMedGoogle Scholar
  17. 17.
    Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Ann Rev Immunol 27:519–550CrossRefGoogle Scholar
  18. 18.
    Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A et al (2007) Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 8:942–949CrossRefPubMedGoogle Scholar
  19. 19.
    Goldring SR (2003) Pathogenesis of bone and cartilage destruction in rheumatoid arthritis. Rheumatology (Oxford) 42(Suppl 2):11–16Google Scholar
  20. 20.
    Fouser LA, Wright JF, Dunussi-Joannopoulos K et al (2008) Th17 cytokines and their emerging roles in inflammation and autoimmunity. Immunol Rev 226:87–102CrossRefPubMedGoogle Scholar
  21. 21.
    Dardalhon V, Korn T, Kuchroo VK et al (2008) Role of Th1 and Th17 cells in organ-specific autoimmunity. J Autoimmun 31:252–256CrossRefPubMedGoogle Scholar
  22. 22.
    Church LD, McDermott MF (2009) Canakinumab, a fully-human mAb against IL-1beta for the potential treatment of inflammatory disorders. Curr Opin Mol Ther 11:81–89PubMedGoogle Scholar
  23. 23.
    McDermott MF (2009) Rilonacept in the treatment of chronic inflammatory disorders. Drugs Today (Barc) 45:423–430Google Scholar
  24. 24.
    Dinarello CA (2009) Role of IL-18 in inflammatory diseases In: Tak PP (ed) New therapeutic targets in rheumatoid arthritis. Birkhäuser, Basel, pp 103–127Google Scholar
  25. 25.
    Kumar S, Hanning CR, Brigham-Burke MR et al (2002) Interleukin-1F7B (IL-1H4/IL-1F7) is processed by caspase-1 and mature IL-1F7B binds to the IL-18 receptor but does not induce IFN-gamma production. Cytokine 18:61–71CrossRefPubMedGoogle Scholar
  26. 26.
    Sharma S, Kulk N, Nold MF et al (2008) The IL-1 family member 7b translocates to the nucleus and down-regulates proinflammatory cytokines. J Immunol 180:5477–5482PubMedGoogle Scholar
  27. 27.
    Murdoch S, Djuric U, Mazhar B et al (2006) Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet 38:300–302CrossRefPubMedGoogle Scholar
  28. 28.
    Jeru I, Duquesnoy P, Fernandes-Alnemri T et al (2008) Mutations in NALP12 cause hereditary periodic fever syndromes. Proc Natl Acad Sci USA 105:1614–1619CrossRefPubMedGoogle Scholar
  29. 29.
    Duzgun N, Ayaslioglu E, Tutkak H et al (2005) Cytokine inhibitors: soluble tumor necrosis factor receptor 1 and interleukin-1 receptor antagonist in Behcet’s disease. Rheumatol Int 25:1–5CrossRefPubMedGoogle Scholar
  30. 30.
    Fitzgerald AA, Leclercq SA, Yan A et al (2005) Rapid responses to anakinra in patients with refractory adult-onset Still’s disease. Arthritis Rheum 52:1794–1803CrossRefPubMedGoogle Scholar
  31. 31.
    Pascual V, Allantaz F, Arce E et al (2005) Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J Exp Med 201:1479–1486CrossRefPubMedGoogle Scholar
  32. 32.
    de Koning HD, Bodar EJ, Simon A et al (2006) Beneficial response to anakinra and thalidomide in Schnitzler’s syndrome. Ann Rheum Dis 65:542–544CrossRefGoogle Scholar
  33. 33.
    Lipsker D, Spehner D, Drillien R et al (2000) Schnitzler syndrome: heterogeneous immunopathological findings involving IgM-skin interactions. Br J Dermatol 142:954–959CrossRefPubMedGoogle Scholar
  34. 34.
    Hayem G (2007) Valuable lessons from SAPHO syndrome. Joint Bone Spine 74:123–126CrossRefPubMedGoogle Scholar
  35. 35.
    Creagh EM, O’Neill LA (2006) TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol 27:352–357CrossRefPubMedGoogle Scholar
  36. 36.
    Lee MS, Kim YJ (2007) Signaling pathways downstream of pattern-recognition receptors and their cross talk. Ann Rev Biochem 76:447–480CrossRefPubMedGoogle Scholar
  37. 37.
    Chen G, Shaw MH, Kim YG et al (2009) NOD-like receptors: role in innate immunity and inflammatory disease. Ann Rev Pathol 4:365–398CrossRefGoogle Scholar
  38. 38.
    Mariathasan S, Monack DM (2007) Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol 7:31–40CrossRefPubMedGoogle Scholar
  39. 39.
    Ogura Y, Sutterwala FS, Flavell RA (2006) The inflammasome: first line of the immune response to cell stress. Cell 126:659–662CrossRefPubMedGoogle Scholar
  40. 40.
    Ting JP, Lovering RC, Alnemri ES et al (2008) The NLR gene family: a standard nomenclature. Immunity 28:285–287CrossRefPubMedGoogle Scholar
  41. 41.
    Bryan NB, Dorfleutner A, Rojanasakul Y et al (2009) Activation of inflammasomes requires intracellular redistribution of the apoptotic speck-like protein containing a caspase recruitment domain. J Immunol 182:3173–3182CrossRefPubMedGoogle Scholar
  42. 42.
    Chae JJ, Komarow HD, Cheng J et al (2003) Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol Cell 11:591–604CrossRefPubMedGoogle Scholar
  43. 43.
    Papin S, Cuenin S, Agostini L et al (2007) The SPRY domain of Pyrin, mutated in familial Mediterranean fever patients, interacts with inflammasome components and inhibits proIL-1beta processing. Cell Death Differ 14:1457–1466CrossRefPubMedGoogle Scholar
  44. 44.
    Tattoli I, Travassos LH, Carneiro LA et al (2007) The Nodosome: Nod1 and Nod2 control bacterial infections and inflammation. Semin Immunopathol 29:289–301CrossRefPubMedGoogle Scholar
  45. 45.
    Hsu YM, Zhang Y, You Y et al (2007) The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens. Nat Immunol 8:198–205CrossRefPubMedGoogle Scholar
  46. 46.
    Chamaillard M, Hashimoto M, Horie Y et al (2003) An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol 4:702–707CrossRefPubMedGoogle Scholar
  47. 47.
    Girardin SE, Boneca IG, Carneiro LA et al (2003) Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300:1584–1587CrossRefPubMedGoogle Scholar
  48. 48.
    Ogura Y, Bonen DK, Inohara N et al (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411:603–606CrossRefPubMedGoogle Scholar
  49. 49.
    Hysi P, Kabesch M, Moffatt MF et al (2005) NOD1 variation, immunoglobulin E and asthma. Hum Mol Genet 14:935–941CrossRefPubMedGoogle Scholar
  50. 50.
    Kanazawa N, Okafuji I, Kambe N et al (2005) Early-onset sarcoidosis and CARD15 mutations with constitutive nuclear factor-kappaB activation: common genetic etiology with Blau syndrome. Blood 105:1195–1197CrossRefPubMedGoogle Scholar
  51. 51.
    Saleh M, Mathison JC, Wolinski MK et al (2006) Enhanced bacterial clearance and sepsis resistance in caspase-12-deficient mice. Nature 440:1064–1068CrossRefPubMedGoogle Scholar
  52. 52.
    Martinon F, Burns KT, Schopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426CrossRefPubMedGoogle Scholar
  53. 53.
    Hsu LC, Ali SR, McGillivray S et al (2008) A NOD2-NALP1 complex mediates caspase-1-dependent IL-1beta secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc Natl Acad Sci USA 105:7803–7808CrossRefPubMedGoogle Scholar
  54. 54.
    de Rivero Vaccari JP, Lotocki G, Alonso OF et al (2009) Therapeutic neutralization of the NLRP1 inflammasome reduces the innate immune response and improves histopathology after traumatic brain injury. J Cereb Blood Flow Metab 29:1251–1261CrossRefGoogle Scholar
  55. 55.
    Jin Y, Mailloux CM, Gowan K et al (2007) NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med 356:1216–1225CrossRefPubMedGoogle Scholar
  56. 56.
    Agostini L, Martinon F, Burns K et al (2004) NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20:319–325CrossRefPubMedGoogle Scholar
  57. 57.
    Halle A, Hornung V, Petzold GC et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9:857–865CrossRefPubMedGoogle Scholar
  58. 58.
    Hornung V, Bauernfeind F, Halle A et al (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9:847–856CrossRefPubMedGoogle Scholar
  59. 59.
    Eisenbarth SC, Colegio OR, O’Connor W et al (2008) Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453:1122–1126CrossRefPubMedGoogle Scholar
  60. 60.
    Dostert C, Petrilli V, Van Bruggen R et al (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–677CrossRefPubMedGoogle Scholar
  61. 61.
    McGonagle D, Tan AL, Madden J et al (2008) Successful treatment of resistant pseudogout with anakinra. Arthritis Rheum 58:631–633CrossRefPubMedGoogle Scholar
  62. 62.
    So A, De Smedt T, Revaz S et al (2007) A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res Ther 9:28CrossRefGoogle Scholar
  63. 63.
    Terkeltaub R, Sundy JS, Schumacher HR et al (2009) The IL-1 inhibitor rilonacept in treatment of chronic gouty arthritis: results of a placebo-controlled, monosequence crossover, nonrandomized, single-blind pilot study. Ann Rheum Dis 68: 1517-1519CrossRefGoogle Scholar
  64. 64.
    Allen IC, Scull MA, Moore CB et al (2009) The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30:556–565CrossRefPubMedGoogle Scholar
  65. 65.
    Hise AG, Tomalka J, Ganesan S et al (2009) An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 5:487–497CrossRefPubMedGoogle Scholar
  66. 66.
    Thomas PG, Dash P, Aldridge JR Jr et al (2009) The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity 30:566–575CrossRefPubMedGoogle Scholar
  67. 67.
    Lee P, Lee DJ, Chan C et al (2009) Dynamic expression of epidermal caspase 8 simulates a wound healing response. Nature 458:519–523CrossRefPubMedGoogle Scholar
  68. 68.
    Watanabe H, Gaide O, Petrilli V et al (2007) Activation of the IL-1beta-processing inflammasome is involved in contact hypersensitivity. J Invest Dermatol 127:1956–1963CrossRefPubMedGoogle Scholar
  69. 69.
    Neven B, Prieur AM, Quartier dit Maire P (2008) Cryopyrinopathies: update on pathogenesis and treatment. Nat Clin Pract Rheumatol 4:481–489CrossRefPubMedGoogle Scholar
  70. 70.
    Villani AC, Lemire M, Fortin G et al (2009) Common variants in the NLRP3 region contribute to Crohn’s disease susceptibility. Nat Genet 41:71–76CrossRefPubMedGoogle Scholar
  71. 71.
    Rosengren S, Hoffman HM, Bugbee W et al (2005) Expression and regulation of cryopyrin and related proteins in rheumatoid arthritis synovium. Ann Rheum Dis 64:708–714CrossRefPubMedGoogle Scholar
  72. 72.
    Schoultz I, Verma D, Halfvarsson J et al (2009) Combined polymorphisms in genes encoding the inflammasome components NALP3 and CARD8 confer susceptibility to Crohn’s disease in Swedish men. Am J Gastroenterol 104:1180–1188CrossRefPubMedGoogle Scholar
  73. 73.
    Kastbom A, Johansson M, Verma D et al (2009) The CARD8 p.C10X polymorphism associates with the inflammatory activity in early rheumatoid arthritis. Ann Rheum Dis (Epub ahead of print)Google Scholar
  74. 74.
    Franchi L, Amer A, Body-Malapel M et al (2006) Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol 7:576–582CrossRefPubMedGoogle Scholar
  75. 75.
    Lightfield KL, Persson J, Brubaker SW et al (2008) Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat Immunol 9:1171–1178CrossRefPubMedGoogle Scholar
  76. 76.
    Petrilli V, Papin S, Dostert C et al (2007) Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 14:1583–1589CrossRefPubMedGoogle Scholar
  77. 77.
    Mariathasan S, Weiss DS, Newton K et al (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228–232CrossRefPubMedGoogle Scholar
  78. 78.
    Kanneganti TD, Lamkanfi M, Kim YG et al (2007) Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 26:433–443CrossRefPubMedGoogle Scholar
  79. 79.
    Martinon F (2007) Orchestration of pathogen recognition by inflammasome diversity: Variations on a common theme. Eur J Immunol 37:3003–3006CrossRefPubMedGoogle Scholar
  80. 80.
    Larsen CM, Faulenbach M, Vaag A et al (2007) Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 356:1517–1526CrossRefPubMedGoogle Scholar
  81. 81.
    Boni-Schnetzler M, Thorne J, Parnaud G et al (2008) Increased interleukin (IL)-1beta messenger ribonucleic acid expression in beta -cells of individuals with type 2 diabetes and regulation of IL-1beta in human islets by glucose and autostimulation. J Clin Endocrinol Metab 93:4065–4074CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2009

Authors and Affiliations

  1. 1.Division of Infection, Inflammation & ImmunitySouthampton General Hospital, School of Medicine, University of Southampton, UKSouthamptonGroßbritannien

Personalised recommendations