Zeitschrift für Rheumatologie

, Volume 65, Issue 4, pp 275–278 | Cite as

Aktuelle pathophysiologische Aspekte der systemischen Sklerose

Leitthema

Zusammenfassung

Die systemische Sklerodermie ist charakterisiert durch einen chronischen Entzündungsprozess noch ungeklärter Ursache, der mit Beteiligung des Gefäßsystems zu einer vermehrten Ablagerung von Bindegewebsproteinen in den betroffenen Organen führt. Die resultierende Fibrose führt zu Atrophie und Funktionsverlust der betroffenen Organe. Auf Grund der Entwicklung neuer therapeutischer Konzepte im Bereich des Gefäßsystems rückt die Interaktion zwischen Gefäßsystem und Bindegewebe stärker in den Vordergrund. Die wesentlichen Fortschritte der letzten Jahre für das Verständnis der Pathogenese der systemischen Sklerodermie werden in dieser Übersicht dargestellt.

Schlüsselwörter

Fibroblast Endothelzelle Hypoxie Fibrose Bindegewebe 

Current pathophysiological aspects of systemic sclerosis

Abstract

Systemic scleroderma is characterized by a chronic inflammatory process of unknown etiology resulting in an increased deposition of connective tissue proteins in the involved organs. Involvement of the vascular system and the resulting fibrosis lead to atrophy and malfunction of the involved internal organs and the skin. Due to the development of new therapeutic concepts in particular with regard to the vascular involvement, the interaction between the vascular system and the connective tissue moves increasingly into focus. This review describes the major advancemades during recent years for the understanding of the pathophysiology of systemic scleroderma.

Keywords

Fibroblast Endothelial cell Hypoxia Fibrosis Connective tissue 

Notes

Danksagung

Diese Arbeit wurde unterstützt durch das BMBF Projekt Nr. 01GM0310.

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Literatur

  1. 1.
    Arbuckle MR, Mcclain MT, Rubertone MV et al. (2003) Development of autoantibodies before the clinical onset of lupus erythematosus. New Engl J Med 349: 1526–1533CrossRefPubMedGoogle Scholar
  2. 2.
    Arlett C, Smith BR, Jimenez SA (1998) New perspectives on the etiology of systemic sclerosis. New Engl J Med 338: 1186–1189CrossRefPubMedGoogle Scholar
  3. 3.
    Brinckmann J, Kim S, Wu J et al. (2005) Interleukin 4 and prolonged hypoxia induce a higher gene expression of lysyl hydroxylase 2 and an altered cross-link pattern: important pathogenetic steps in early and late stage of systemic scleroderma? Matrix Biol 24: 459–468CrossRefPubMedGoogle Scholar
  4. 4.
    Chujo S, Shirasaki F, Kawara S et al. (2005) Connective tissue growth factor causes persistent proalpha2(I) collagen gene expression induced by transforming growth factor-beta in a mouse fibrosis model. J Cell Physiol 203: 447–456CrossRefPubMedGoogle Scholar
  5. 5.
    Davies CA, Jeziorska M, Freemont AJ, Herrick AL (2005) The differential expression of VEGF, VEGFR-2, and GLUT-1 proteins in disease subtypes of systemic sclerosis. Hum Pathol 37: 190–197CrossRefPubMedGoogle Scholar
  6. 6.
    Denton CP, Abraham DJ (2001) Transforming growth factor-beta and connective tissue growth factor: key cytokines in scleroderma pathogenesis. Curr Opin Rheumatol 13: 505–511CrossRefPubMedGoogle Scholar
  7. 7.
    Denton CP, Abraham DJ (2004) Transgenic analysis of scleroderma: understanding key pathogenic events in vivo. Autoimmun Rev 3: 285–293CrossRefPubMedGoogle Scholar
  8. 8.
    Distler O, Del Rosso A, Giacomelli R et al. (2002) Angiogenic and gniostatic factors in systemic sclerosis: increased levels of vascular endothelial growth factor are a feature of the earliest disease stages and are associated with the absence of fingertip ulcers. Arthritis Res 4: R11CrossRefPubMedGoogle Scholar
  9. 9.
    Dziadzio M, Smith RE, Abraham DJ et al. (2004) Serological assessment of type I collagen burden in scleroderma spectrum disorders: a systematic review. Clin Exp Rheumatol 22: 356–367PubMedGoogle Scholar
  10. 10.
    Ho KT, Reveille JD (2003) The clinical relevance of autoantibodies in scleroderma. Arthritis Res Ther 5: 80–93PubMedGoogle Scholar
  11. 11.
    Horstmeyer A, Licht C, Scherr G et al. (2005) Signalling and regulation of collagen I synthesis by ET-1 and TGF-beta 1. FEBS J 272: 6297–6309CrossRefPubMedGoogle Scholar
  12. 12.
    Hunzelmann N, Risteli J, Risteli L et al. (1998) Circulating type I collagen degradation products: a new serum marker for clinical severity in patients with scleroderma? Br J Dermatol 139: 1020–1025CrossRefPubMedGoogle Scholar
  13. 13.
    Igarashi A, Nashiro K, Kikuchi K et al. (1995) Significant correlation between connective tissue growth factor gene expression and skin sclerosis in tissue sections from patients with systemic sclerosis. J Invest Dermatol 105: 280–284CrossRefPubMedGoogle Scholar
  14. 14.
    Kawakami T, Ihn H, Xu W et al. (1998) Increased expression of TGF-beta receptors by scleroderma fibroblasts: evidence for contribution of autocrine TGF-beta signaling to scleroderma phenotype. J Invest Dermatol 110: 47–51CrossRefPubMedGoogle Scholar
  15. 15.
    Kim WU, Min SY, Cho ML et al. (2005) Elevated matrix metalloproteinase-9 in patients with systemic sclerosis. Arthritis Res Ther 7: R71–R79CrossRefPubMedGoogle Scholar
  16. 16.
    Kulozik M, Hogg A, Lankat-Buttgereit B, Krieg T (1990) Co-localization of transforming growth factor ß2 with a1(1) procollagen mRNA in tissue sections of patients with systemic sclerosis. J Clin Invest 86: 917–921PubMedGoogle Scholar
  17. 17.
    Kuryliszyn-Moskal A, Klimiuk PA, Sierakowski S (2005) Soluble adhesion molecules (sVCAM-1, sE-selectin), vascular endothelial growth factor (VEGF) and endothelin-1 in patients with systemic sclerosis: relationship to organ systemic involvement. Clin Rheumatol 24: 111–116CrossRefPubMedGoogle Scholar
  18. 18.
    Kuwana M, Okazaki Y, Yasuoka H et al. (2004) Defective vasculogenesis in systemic sclerosis. Lancet 364: 603–610CrossRefPubMedGoogle Scholar
  19. 19.
    Mayes MD (2003) Scleroderma epidemiology. Rheum Dis Clin North Am 29: 239–254CrossRefPubMedGoogle Scholar
  20. 20.
    Novobrantseva TI, Majeau GR, Amatucci A et al. (2005) Attenuated liver fibrosis in the absence of B cells. J Clin Invest 115: 3072–3082CrossRefPubMedGoogle Scholar
  21. 21.
    Scheja A, Wildt M, Wollheim FA et al. (2000) Circulating collagen metabolites in systemic sclerosis. Differences between limited and diffuse form and relationship with pulmonary involvement. Rheumatology 39: 1110–1113CrossRefPubMedGoogle Scholar
  22. 22.
    Shi-Wen X, Pennington D, Holmes A et al. (2000) Autocrine overexpression of CTGF maintains fibrosis: RDA analysis of fibrosis genes in systemic sclerosis. Exp Cell Res 25: 213–224CrossRefGoogle Scholar
  23. 23.
    Van den Brule S, Misson P, Buhling F et al. (2005) Overexpression of cathepsin K during silica-induced lung fibrosis and control by TGF-beta. Respir Res 6: 84CrossRefPubMedGoogle Scholar
  24. 24.
    Van der Slot AJ, Zuurmond AM, Bardoel AF et al. (2003). Identification of PLOD2 as telopeptide lysyl hydroxylase, an important enzyme in fibrosis. J Biol Chem 278: 40967–40972CrossRefPubMedGoogle Scholar
  25. 25.
    Worda M, Sgonc R, Dietrich H et al. (2003) In vivo analysis of the apoptosis inducing effect of anti-endothelial cell antibodies in systemic sclerosis by the chorioallantoic assay. Arthritis Rheum 48: 2605–2614CrossRefPubMedGoogle Scholar
  26. 26.
    Yamamoto T, Eckes B, Krieg T (2001) High expression and autoinduction of monocyte chemoattractant protein-1 in scleroderma fibroblasts. Eur J Immunol 31: 2936–2941CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2006

Authors and Affiliations

  1. 1.Klinik und Poliklinik für Dermatologie und Venerologie, Universität zu KölnKöln

Personalised recommendations