Transcatheter aortic valve replacement acutely improves left ventricular mechanical efficiency in severe aortic stenosis: effects of different phenotypes

  • Paolo N. MarinoEmail author
  • G. Binda
  • E. Calzaducca
  • A. Panizza
  • I. Ferrari
  • I. Bellacosa
  • G. Ambrosio
Original Paper



Aortic stenosis is a frequent valvular disease, with transcatheter aortic valve implantation (TAVI) being performed when surgical replacement is at increased risk. However, TAVI-induced effects on myocardial efficiency are unknown. We aimed to investigate changes in LV mechano-energetic pre-/post-TAVI and their prognostic impact.


A total of 46 patients (25 males) received transesophageal and simultaneous radial pressure plus transaortic gradient monitoring before/immediately after prosthesis deployment. Efficiency was computed as external work/potential energy, as derived from LV pressure–volume plots; myocardial oxygen consumption (MVO2) was estimated as PWImod, i.e. a noninvasively validated alternative for MVO2 estimation.


TAVI was successful in all patients, peak transaortic gradient decreasing − 40 ± 20 mmHg (p < 0.001). Efficiency improved post-TAVI (+ 0.6 ± 0.12; p = 0.004), with a concomitant PWImod reduction (− 16 ± 31%; p < 0.001). When contextualized to fixed PWImod value (5 ml/min/100 g), efficiency significantly affected survival (p = 0.029). Over 1026 ± 450-day follow-up, a change in efficiency pre-/post-TAVI ≤ 0.021 (median of the difference) predicted more deaths from any cause (30%) as compared with a change > 0.021 (17%), particularly in those patients with a pre-TAVI mean high-gradient (HG ≥ 40 mmHg) phenotype (p < 0.05). In particular, HG patients exhibited the lowest efficiency/PWImod ratio pre-/post-TAVI (p = 0.048), relative to the other aortic stenosis patients, suggestive of an unfavourable matching between cardiac function and metabolic demand, which foreshortens some intrinsic damaged muscle condition in these patients.


LV mechanical efficiency improves immediately post-TAVI, notwithstanding an inhomogeneous mechano-energetic matching among the aortic stenosis patients, which can impact negatively on their long-term prognosis, particularly in those with the HG phenotype.

Graphic abstract


Aortic valve stenosis Transcatheter aortic valve implantation Pressure–volume plot Myocardial efficiency Oxygen consumption Aortic stenosis phenotypes 



We thank A.S. Bongo MDa, G. De Luca MDa, R. Rosso MDa, E. Micalizzi MDb, M. Commodo MDb, C. Monaco MDc for having allowed us to collect data in their patients, Cardiology Divisiona, Division of Cardiac Surgeryb, Service of Cardiac Anestesiologyc, Azienda Ospedaliera Universitaria “Maggiore della Carità”, Novara, Italy.

Supplementary material

392_2019_1570_MOESM1_ESM.tif (437 kb)
Supplementary file1 (TIFF 438 kb)
392_2019_1570_MOESM2_ESM.docx (13 kb)
Supplementary file2 (DOCX 12 kb)
392_2019_1570_MOESM3_ESM.docx (13 kb)
Supplementary file3 (DOCX 13 kb)


  1. 1.
    Baumgartner H, Falk V, Bax JJ et al (2017) 2017 ESC/EACTS guidelines for the management of valvular heart disease. Eur Heart J 38:2739–2786CrossRefGoogle Scholar
  2. 2.
    Eveborn GW, Schirmer H, Heggelund G, Lunde P, Rasmussen K (2013) The evolving epidemiology of valvular aortic stenosis: the Tromsø study. Heart 99:396–400CrossRefGoogle Scholar
  3. 3.
    Nishimura RA, Otto CM, Bonow RO et al (2017) 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 70:252–289CrossRefGoogle Scholar
  4. 4.
    Dimitrow PP (2014) Aortic stenosis: new pathophysiological mechanisms and their therapeutic implications. Pol Arch Med Wewn 124:723–730PubMedGoogle Scholar
  5. 5.
    Mack MJ, Leon MB, Thourani VH et al (2019) Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med 380:1695–1705CrossRefGoogle Scholar
  6. 6.
    Popma JJ, Deeb GM, Yakubov SJ et al (2019) Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. N Engl J Med 380:1706–1715CrossRefGoogle Scholar
  7. 7.
    Bing RJ, Hammond MM, Handelsman J, Powers R (1949) The measurement of coronary blood flow, oxygen consumption, and efficiency of the left ventricle in man. Am Heart J 38:1–24CrossRefGoogle Scholar
  8. 8.
    Hansson NH, Sörensen J, Harms HJ et al (2017) Myocardial oxygen consumption and efficiency in aortic valve stenosis patients with and without heart failure. J Am Heart Assoc 6:1–10CrossRefGoogle Scholar
  9. 9.
    Güçlü A, Knaapen P, Harms HJ et al (2015) Myocardial efficiency is an important determinant of functional improvement after aortic valve replacement in aortic valve stenosis patients: a combined PET and CMR study. Eur Heart J Cardiovasc Imaging 16:882–889CrossRefGoogle Scholar
  10. 10.
    Klotz S, Dickstein ML, Burkhoff D (2007) A computational method of prediction of the end-diastolic pressure-volume relationship by single beat. Nat Protoc 2:2152–2158CrossRefGoogle Scholar
  11. 11.
    Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quiñones MA (1997) Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol 30:1527–1533CrossRefGoogle Scholar
  12. 12.
    Schwarzl M, Ojeda F, Zeller T et al (2016) Risk factors for heart failure are associated with alterations of the LV end-diastolic pressure–volume relationship in non-heart failure individuals: data from a large-scale, population based cohort. Eur Heart J 37:1807–1814CrossRefGoogle Scholar
  13. 13.
    Kass DA, Marino P, Maughan WL, Sagawa K (1989) Determinants of end-systolic pressure–volume relations during acute regional ischemia in situ. Circulation 80:1783–1794CrossRefGoogle Scholar
  14. 14.
    Chen CH, Fetics B, Nevo E, Rochitte C, Chiou K, Kass DA (2001) Non invasive single-beat determination of left ventricular end-systolic elastance in humans. J Am Coll Cardiol 38:2028–2034CrossRefGoogle Scholar
  15. 15.
    Borow KM, Green LH, Grossman W, Braunwald E (1982) Left ventricular end-systolic stress-shortening and stress-length relations in humans. Am J Cardiol 50:1301–1308CrossRefGoogle Scholar
  16. 16.
    Rooke GA, Feigl EO (1982) Work as a correlate of canine left ventricular oxygen consumption, and the problem of catecholamine oxygen wasting. Circ Res 59:273–286CrossRefGoogle Scholar
  17. 17.
    Hoeft A, Sonntag H, Stephan H, Kletter D (1991) Validation of myocardial oxygen demand indices in patients awake and during anesthesia. Anesthesiology 75:49–56CrossRefGoogle Scholar
  18. 18.
    Knaapen P, Germans T, Knuuti J et al (2007) Myocardial energetics and efficiency: current status of the noninvasive approach. Circulation 115:918–927CrossRefGoogle Scholar
  19. 19.
    Burkhoff D, Sagawa K (1986) Ventricular efficiency predicted by an analytical model. Am J Physiol 250:R1021–R1027PubMedGoogle Scholar
  20. 20.
    Suga H (1990) Ventricular energetics. Physiol Rev 70:247–277CrossRefGoogle Scholar
  21. 21.
    Devereux RB, Lutas EM, Casale PN et al (1984) Standardization of M-mode echocardiographic left ventricular anatomic measurements. J Am Coll Cardiol 4:1222–1230CrossRefGoogle Scholar
  22. 22.
    Clavel MA, Dumesnil JG, Capoulade R, Mathieu P, Sénéchal M, Pibarot P (2012) Outcome of patients with aortic stenosis, small valve area, and low-flow, low-gradient despite preserved left ventricular ejection fraction. J Am Coll Cardiol 60:1259–1267CrossRefGoogle Scholar
  23. 23.
    Eleid MF, Padang R, Al-Hijji M et al (2019) Hemodynamic response in low-flow low gradient aortic stenosis with preserved ejection fraction after TAVR. J Am Coll Cardiol 73:1731–1732CrossRefGoogle Scholar
  24. 24.
    Di Bello V, Giannini C, De Carlo M et al (2012) Acute improvement in arterial-ventricular coupling after transcatheter aortic valve implantation (CoreValve) in patients with symptomatic aortic stenosis. Int J Cardiovasc Imaging 28:79–87CrossRefGoogle Scholar
  25. 25.
    Takeuchi M, Odake M, Takaoka H, Hayashi Y, Yokoyama M (1992) Comparison between preload recruitable stroke work and the end-systolic pressure–volume relationship in man. Eur Heart J 13(suppl 1):80–84CrossRefGoogle Scholar
  26. 26.
    Migliore RA, Adaniya ME, Barranco M et al (2016) Ventricular-arterial coupling in severe aortic stenosis: relationship with symptoms and heart failure. Rev Argent Cardiol 84:304–309Google Scholar
  27. 27.
    Little SH, Oh JK, Gilliam L et al (2016) Self-expanding transcatheter aortic valve replacement versus surgical valve replacement in patients at high risk for surgery: a study of echocardiographic change and risk prediction. Circ Cardiovasc Interv 9:1–11CrossRefGoogle Scholar
  28. 28.
    Braunwald E (1971) Control of myocardial oxygen consumption. Physiologic and clinical considerations. Am J Cardiol 27:416–432CrossRefGoogle Scholar
  29. 29.
    Gotzmann M, Hauptmann S, Hogeweg M et al (2019) Hemodynamics of paradoxical severe aortic stenosis: insight from a pressure-volume loop analysis. Clin Res Cardiol. CrossRefPubMedGoogle Scholar
  30. 30.
    Dekker AL, Barenbrug PJ, van Der Veen FH, Roekaerts P, Mochtar B, Maessen JG (2003) Pressure–volume loops in patients with aortic stenosis. J Heart Valve Dis 12:325–332PubMedGoogle Scholar
  31. 31.
    Tanoue Y, Maeda T, Oda S et al (2009) Left ventricular performance in aortic valve replacement. Interact Cardiovasc Thorac Surg 9:255–259CrossRefGoogle Scholar
  32. 32.
    Neubauer S (2007) The failing heart—an engine out of fuel. N Engl J Med 356:1140–1151CrossRefGoogle Scholar
  33. 33.
    van der Velden J (2017) Targeting high oxygen consumption to prevent cardiac dysfunction in patients with aortic valve stenosis. Circ Cardiovasc Imaging 10:10CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Paolo N. Marino
    • 1
    Email author
  • G. Binda
    • 2
    • 4
  • E. Calzaducca
    • 2
  • A. Panizza
    • 2
  • I. Ferrari
    • 2
  • I. Bellacosa
    • 2
  • G. Ambrosio
    • 3
    • 4
  1. 1.Department of Translational MedicineUniversità del Piemonte OrientaleNovaraItaly
  2. 2.Cardiology DivisionAzienda Ospedaliera Universitaria “Maggiore Della Carità”NovaraItaly
  3. 3.Section of Cardiology and Cardiovascular Pathophysiology, Department of MedicinePerugia UniversityPerugiaItaly
  4. 4.MultiMedica IRCCSMilanItaly

Personalised recommendations