Advertisement

Clinical and genetic insights into non-compaction: a meta-analysis and systematic review on 7598 individuals

  • Elham Kayvanpour
  • Farbod Sedaghat-Hamedani
  • Weng-Tein Gi
  • Oguz Firat Tugrul
  • Ali Amr
  • Jan Haas
  • Feng Zhu
  • Philipp Ehlermann
  • Lorenz Uhlmann
  • Hugo A. Katus
  • Benjamin MederEmail author
Original Paper
  • 114 Downloads

Abstract

Background

Left ventricular non-compaction has been increasingly diagnosed in recent years. However, it is still debated whether non-compaction is a pathological condition or a physiological trait. In this meta-analysis and systematic review, we compare studies, which investigated these two different perspectives. Furthermore, we provide a comprehensive overview on the clinical outcome as well as genetic background of left ventricular non-compaction cardiomyopathy in adult patients.

Methods and results

We retrieved PubMed/Medline literatures in English language from 2000 to 19/09/2018 on clinical outcome and genotype of patients with non-compaction. We summarized and extensively reviewed all studies that passed selection criteria and performed a meta-analysis on key phenotypic parameters. Altogether, 35 studies with 2271 non-compaction patients were included in our meta-analysis. The mean age at diagnosis was the mid of their fifth decade. Two-thirds of patients were male. Congenital heart diseases including atrial or ventricular septum defect or Ebstein anomaly were reported in 7% of patients. Twenty-four percent presented with family history of cardiomyopathy. The mean frequency of neuromuscular diseases was 5%. Heart rhythm abnormalities were reported frequently: conduction disease in 26%, supraventricular tachycardia in 17%, and sustained or non-sustained ventricular tachycardia in 18% of patients. Three important outcome measures were reported including systemic thromboembolic events with a mean frequency of 9%, heart transplantation with 4%, and adequate ICD therapy with 15%. Nine studies investigated the genetics of non-compaction cardiomyopathy. The most frequently mutated gene was TTN with a pooled frequency of 11%. The average frequency of MYH7 mutations was 9%, for MYBPC3 mutations 5%, and for CASQ2 and LDB3 3% each. TPM1, MIB1, ACTC1, and LMNA mutations had an average frequency of 2% each. Mutations in PLN, HCN4, TAZ, DTNA, TNNT2, and RBM20 were reported with a frequency of 1% each. We also summarized the results of eight studies investigating the non-compaction in altogether 5327 athletes, pregnant women, patients with sickle cell disease, as well as individuals from population-based cohorts, in which the presence of left ventricular hypertrabeculation ranged from 1.3 to 37%.

Conclusion

The summarized data indicate that non-compaction may lead to unfavorable outcome in different cardiomyopathy entities. The presence of key features in a multimodal diagnostic approach could distinguish between benign morphological trait and manifest cardiomyopathy.

Keywords

Left ventricular non-compaction Genetic background Clinical outcome 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

392_2019_1465_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 12 KB)
392_2019_1465_MOESM2_ESM.pptx (1.4 mb)
Supplementary material 2 (PPTX 1394 KB)
392_2019_1465_MOESM3_ESM.docx (32 kb)
Supplementary material 3 (DOCX 32 KB)
392_2019_1465_MOESM4_ESM.docx (22 kb)
Supplementary material 4 (DOCX 21 KB)
392_2019_1465_MOESM5_ESM.docx (18 kb)
Supplementary material 5 (DOCX 18 KB)

References

  1. 1.
    Arbustini E, Weidemann F, Hall JL (2014) Left ventricular noncompaction: a distinct cardiomyopathy or a trait shared by different cardiac diseases? J Am Coll Cardiol 64(17):1840–1850.  https://doi.org/10.1016/j.jacc.2014.08.030 Google Scholar
  2. 2.
    Oechslin E, Jenni R (2011) Left ventricular non-compaction revisited: a distinct phenotype with genetic heterogeneity? Eur Heart J 32(12):1446–1456.  https://doi.org/10.1093/eurheartj/ehq508 Google Scholar
  3. 3.
    Gati S, Papadakis M, Papamichael ND, Zaidi A, Sheikh N, Reed M, Sharma R, Thilaganathan B, Sharma S (2014) Reversible de novo left ventricular trabeculations in pregnant women: implications for the diagnosis of left ventricular noncompaction in low-risk populations. Circulation 130(6):475–483.  https://doi.org/10.1161/CIRCULATIONAHA.114.008554 Google Scholar
  4. 4.
    Towbin JA, Lorts A, Jefferies JL (2015) Left ventricular non-compaction cardiomyopathy. Lancet 386(9995):813–825.  https://doi.org/10.1016/S0140-6736(14)61282-4 Google Scholar
  5. 5.
    Caselli S, Ferreira D, Kanawati E, Di Paolo F, Pisicchio C, Attenhofer Jost C, Spataro A, Jenni R, Pelliccia A (2016) Prominent left ventricular trabeculations in competitive athletes: a proposal for risk stratification and management. Int J Cardiol 223:590–595.  https://doi.org/10.1016/j.ijcard.2016.08.272 Google Scholar
  6. 6.
    Luijkx T, Cramer MJ, Zaidi A, Rienks R, Senden PJ, Sharma S, van Hellemondt FJ, Buckens CF, Mali WP, Velthuis BK (2012) Ethnic differences in ventricular hypertrabeculation on cardiac MRI in elite football players. Neth Heart J 20(10):389–395.  https://doi.org/10.1007/s12471-012-0305-7 Google Scholar
  7. 7.
    Kawel N, Nacif M, Arai AE, Gomes AS, Hundley WG, Johnson WC, Prince MR, Stacey RB, Lima JA, Bluemke DA (2012) Trabeculated (noncompacted) and compact myocardium in adults: the multi-ethnic study of atherosclerosis. Circ Cardiovasc Imaging 5(3):357–366.  https://doi.org/10.1161/CIRCIMAGING.111.971713 Google Scholar
  8. 8.
    Tizon-Marcos H, de la Paz Ricapito M, Pibarot P, Bertrand O, Bibeau K, Le Ven F, Sinha S, Engert J, Bedard E, Pasian S, Deschepper C, Larose E (2014) Characteristics of trabeculated myocardium burden in young and apparently healthy adults. Am J Cardiol 114(7):1094–1099.  https://doi.org/10.1016/j.amjcard.2014.07.025 Google Scholar
  9. 9.
    Weir-McCall JR, Yeap PM, Papagiorcopulo C, Fitzgerald K, Gandy SJ, Lambert M, Belch JJ, Cavin I, Littleford R, Macfarlane JA, Matthew SZ, Nicholas RS, Struthers AD, Sullivan F, Waugh SA, White RD, Houston JG (2016) Left ventricular noncompaction: anatomical phenotype or distinct cardiomyopathy? J Am Coll Cardiol 68(20):2157–2165.  https://doi.org/10.1016/j.jacc.2016.08.054 Google Scholar
  10. 10.
    Cai J, Bryant JA, Le TT, Su B, de Marvao A, O’Regan DP, Cook SA, Chin CW (2017) Fractal analysis of left ventricular trabeculations is associated with impaired myocardial deformation in healthy Chinese. J Cardiovasc Magn Reson 19(1):102.  https://doi.org/10.1186/s12968-017-0413-z Google Scholar
  11. 11.
    Sedaghat-Hamedani F, Haas J, Zhu F, Geier C, Kayvanpour E, Liss M, Lai A, Frese K, Pribe-Wolferts R, Amr A, Li DT, Samani OS, Carstensen A, Bordalo DM, Muller M, Fischer C, Shao J, Wang J, Nie M, Yuan L, Hassfeld S, Schwartz C, Zhou M, Zhou Z, Shu Y, Wang M, Huang K, Zeng Q, Cheng L, Fehlmann T, Ehlermann P, Keller A, Dieterich C, Streckfuss-Bomeke K, Liao Y, Gotthardt M, Katus HA, Meder B (2017) Clinical genetics and outcome of left ventricular non-compaction cardiomyopathy. Eur Heart J 38(46):3449–3460.  https://doi.org/10.1093/eurheartj/ehx545 Google Scholar
  12. 12.
    Oechslin EN, Attenhofer Jost CH, Rojas JR, Kaufmann PA, Jenni R (2000) Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J Am Coll Cardiol 36(2):493–500Google Scholar
  13. 13.
    Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, Dubourg O, Kuhl U, Maisch B, McKenna WJ, Monserrat L, Pankuweit S, Rapezzi C, Seferovic P, Tavazzi L, Keren A (2008) Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 29(2):270–276.  https://doi.org/10.1093/eurheartj/ehm342 Google Scholar
  14. 14.
    Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, Moss AJ, Seidman CE, Young JB, American Heart A, Council on Clinical Cardiology HF, Transplantation C, Quality of C, Outcomes R, Functional G, Translational Biology Interdisciplinary Working G, Council on E, Prevention (2006) Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113(14):1807–1816.  https://doi.org/10.1161/CIRCULATIONAHA.106.174287 Google Scholar
  15. 15.
    Xing Y, Ichida F, Matsuoka T, Isobe T, Ikemoto Y, Higaki T, Tsuji T, Haneda N, Kuwabara A, Chen R, Futatani T, Tsubata S, Watanabe S, Watanabe K, Hirono K, Uese K, Miyawaki T, Bowles KR, Bowles NE, Towbin JA (2006) Genetic analysis in patients with left ventricular noncompaction and evidence for genetic heterogeneity. Mol Genet Metab 88(1):71–77.  https://doi.org/10.1016/j.ymgme.2005.11.009 Google Scholar
  16. 16.
    Stollberger C, Finsterer J, Blazek G (2002) Left ventricular hypertrabeculation/noncompaction and association with additional cardiac abnormalities and neuromuscular disorders. Am J Cardiol 90(8):899–902Google Scholar
  17. 17.
    Sasse-Klaassen S, Gerull B, Oechslin E, Jenni R, Thierfelder L (2003) Isolated noncompaction of the left ventricular myocardium in the adult is an autosomal dominant disorder in the majority of patients. Am J Med Genet A 119A(2):162–167.  https://doi.org/10.1002/ajmg.a.20075 Google Scholar
  18. 18.
    Sengupta PP, Mohan JC, Mehta V, Jain V, Arora R, Pandian NG, Khandheria BK (2004) Comparison of echocardiographic features of noncompaction of the left ventricle in adults versus idiopathic dilated cardiomyopathy in adults. Am J Cardiol 94(3):389–391.  https://doi.org/10.1016/j.amjcard.2004.04.046 Google Scholar
  19. 19.
    Kawasaki T, Azuma A, Taniguchi T, Asada S, Kamitani T, Kawasaki S, Matsubara H, Sugihara H (2005) Heart rate variability in adult patients with isolated left ventricular noncompaction. Int J Cardiol 99(1):147–150.  https://doi.org/10.1016/j.ijcard.2003.11.029 Google Scholar
  20. 20.
    Murphy RT, Thaman R, Blanes JG, Ward D, Sevdalis E, Papra E, Kiotsekoglou A, Tome MT, Pellerin D, McKenna WJ, Elliott PM (2005) Natural history and familial characteristics of isolated left ventricular non-compaction. Eur Heart J 26(2):187–192.  https://doi.org/10.1093/eurheartj/ehi025 Google Scholar
  21. 21.
    Lofiego C, Biagini E, Ferlito M, Pasquale F, Rocchi G, Perugini E, Leone O, Bracchetti G, Caliskan K, Branzi A, ten Cate FJ, Rapezzi C (2006) Paradoxical contributions of non-compacted and compacted segments to global left ventricular dysfunction in isolated left ventricular noncompaction. Am J Cardiol 97(5):738–741.  https://doi.org/10.1016/j.amjcard.2005.09.109 Google Scholar
  22. 22.
    Aras D, Tufekcioglu O, Ergun K, Ozeke O, Yildiz A, Topaloglu S, Deveci B, Sahin O, Kisacik HL, Korkmaz S (2006) Clinical features of isolated ventricular noncompaction in adults long-term clinical course, echocardiographic properties, and predictors of left ventricular failure. J Card Fail 12(9):726–733.  https://doi.org/10.1016/j.cardfail.2006.08.002 Google Scholar
  23. 23.
    Klaassen S, Probst S, Oechslin E, Gerull B, Krings G, Schuler P, Greutmann M, Hurlimann D, Yegitbasi M, Pons L, Gramlich M, Drenckhahn JD, Heuser A, Berger F, Jenni R, Thierfelder L (2008) Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation 117(22):2893–2901.  https://doi.org/10.1161/CIRCULATIONAHA.107.746164 Google Scholar
  24. 24.
    Kohli SK, Pantazis AA, Shah JS, Adeyemi B, Jackson G, McKenna WJ, Sharma S, Elliott PM (2008) Diagnosis of left-ventricular non-compaction in patients with left-ventricular systolic dysfunction: time for a reappraisal of diagnostic criteria? Eur Heart J 29(1):89–95.  https://doi.org/10.1093/eurheartj/ehm481 Google Scholar
  25. 25.
    Stanton C, Bruce C, Connolly H, Brady P, Syed I, Hodge D, Asirvatham S, Friedman P (2009) Isolated left ventricular noncompaction syndrome. Am J Cardiol 104(8):1135–1138.  https://doi.org/10.1016/j.amjcard.2009.05.062 Google Scholar
  26. 26.
    Hoedemaekers YM, Caliskan K, Michels M, Frohn-Mulder I, van der Smagt JJ, Phefferkorn JE, Wessels MW, ten Cate FJ, Sijbrands EJ, Dooijes D, Majoor-Krakauer DF (2010) The importance of genetic counseling, DNA diagnostics, and cardiologic family screening in left ventricular noncompaction cardiomyopathy. Circ Cardiovasc Genet 3(3):232–239.  https://doi.org/10.1161/CIRCGENETICS.109.903898 Google Scholar
  27. 27.
    Kobza R, Steffel J, Erne P, Schoenenberger AW, Hurlimann D, Luscher TF, Jenni R, Duru F (2010) Implantable cardioverter-defibrillator and cardiac resynchronization therapy in patients with left ventricular noncompaction. Heart Rhythm 7(11):1545–1549.  https://doi.org/10.1016/j.hrthm.2010.05.025 Google Scholar
  28. 28.
    Habib G, Charron P, Eicher JC, Giorgi R, Donal E, Laperche T, Boulmier D, Pascal C, Logeart D, Jondeau G, Cohen-Solal A, Working Groups ‘Heart F, Cardiomyopathies, Echocardiography’ of the French Society of C (2011) Isolated left ventricular non-compaction in adults: clinical and echocardiographic features in 105 patients. Results from a French registry. Eur J Heart Fail 13(2):177–185.  https://doi.org/10.1093/eurjhf/hfq225 Google Scholar
  29. 29.
    Probst S, Oechslin E, Schuler P, Greutmann M, Boye P, Knirsch W, Berger F, Thierfelder L, Jenni R, Klaassen S (2011) Sarcomere gene mutations in isolated left ventricular noncompaction cardiomyopathy do not predict clinical phenotype. Circ Cardiovasc Genet 4(4):367–374.  https://doi.org/10.1161/CIRCGENETICS.110.959270 Google Scholar
  30. 30.
    Steffel J, Hurlimann D, Namdar M, Despotovic D, Kobza R, Wolber T, Holzmeister J, Haegeli L, Brunckhorst C, Luscher TF, Jenni R, Duru F (2011) Long-term follow-up of patients with isolated left ventricular noncompaction: role of electrocardiography in predicting poor outcome. Circ J 75(7):1728–1734Google Scholar
  31. 31.
    Dellegrottaglie S, Pedrotti P, Roghi A, Pedretti S, Chiariello M, Perrone-Filardi P (2012) Regional and global ventricular systolic function in isolated ventricular non-compaction: pathophysiological insights from magnetic resonance imaging. Int J Cardiol 158(3):394–399.  https://doi.org/10.1016/j.ijcard.2011.01.063 Google Scholar
  32. 32.
    Ning XH, Tang M, Chen KP, Hua W, Chen RH, Sha J, Liu ZM, Zhang S (2012) The prognostic significance of fragmented QRS in patients with left ventricular noncompaction cardiomyopathy. Can J Cardiol 28(4):508–514.  https://doi.org/10.1016/j.cjca.2012.01.011 Google Scholar
  33. 33.
    Stahli BE, Gebhard C, Biaggi P, Klaassen S, Valsangiacomo Buechel E, Attenhofer Jost CH, Jenni R, Tanner FC, Greutmann M (2013) Left ventricular non-compaction: prevalence in congenital heart disease. Int J Cardiol 167(6):2477–2481.  https://doi.org/10.1016/j.ijcard.2012.05.095 Google Scholar
  34. 34.
    Luxan G, Casanova JC, Martinez-Poveda B, Prados B, D’Amato G, MacGrogan D, Gonzalez-Rajal A, Dobarro D, Torroja C, Martinez F, Izquierdo-Garcia JL, Fernandez-Friera L, Sabater-Molina M, Kong YY, Pizarro G, Ibanez B, Medrano C, Garcia-Pavia P, Gimeno JR, Monserrat L, Jimenez-Borreguero LJ, de la Pompa JL (2013) Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy. Nat Med 19(2):193–201.  https://doi.org/10.1038/nm.3046 Google Scholar
  35. 35.
    Ashrith G, Gupta D, Hanmer J, Weiss RM (2014) Cardiovascular magnetic resonance characterization of left ventricular non-compaction provides independent prognostic information in patients with incident heart failure or suspected cardiomyopathy. J Cardiovasc Magn Reson 16:64.  https://doi.org/10.1186/s12968-014-0064-2 Google Scholar
  36. 36.
    Peters F, Khandheria BK, Botha F, Libhaber E, Matioda H, Dos Santos C, Govender S, Meel R, Essop MR (2014) Clinical outcomes in patients with isolated left ventricular noncompaction and heart failure. J Card Fail 20(10):709–715.  https://doi.org/10.1016/j.cardfail.2014.07.007 Google Scholar
  37. 37.
    Tian T, Wang J, Wang H, Sun K, Wang Y, Jia L, Zou Y, Hui R, Zhou X, Song L (2015) A low prevalence of sarcomeric gene variants in a Chinese cohort with left ventricular non-compaction. Heart Vessels 30(2):258–264.  https://doi.org/10.1007/s00380-014-0503-x Google Scholar
  38. 38.
    Cetin MS, Ozcan Cetin EH, Canpolat U, Cay S, Topaloglu S, Temizhan A, Aydogdu S (2016) Usefulness of fragmented QRS complex to predict arrhythmic events and cardiovascular mortality in patients with noncompaction cardiomyopathy. Am J Cardiol 117(9):1516–1523.  https://doi.org/10.1016/j.amjcard.2016.02.022 Google Scholar
  39. 39.
    Diwadkar S, Nallamshetty L, Rojas C, Athienitis A, Declue C, Cox C, Patel A, Chae SH (2017) Echocardiography fails to detect left ventricular noncompaction in a cohort of patients with noncompaction on cardiac magnetic resonance imaging. Clin Cardiol 40(6):364–369.  https://doi.org/10.1002/clc.22669 Google Scholar
  40. 40.
    Gaye ND, Ngaide AA, Bah MB, Babaka K, Mbaye A, Abdoul K (2017) Non-compaction of left ventricular myocardium in sub-Saharan African adults. Heart Asia 9(2):e010884.  https://doi.org/10.1136/heartasia-2017-010884 Google Scholar
  41. 41.
    Salazar-Mendiguchia J, Gonzalez-Costello J, Oliveras T, Gual F, Lupon J, Manito N (2017) Long-term follow-up of symptomatic adult patients with noncompaction cardiomyopathy. Rev Esp Cardiol (Engl Ed).  https://doi.org/10.1016/j.rec.2017.11.021 Google Scholar
  42. 42.
    Zhou H, Lin X, Fang L, Zhu W, Zhao X, Ding H, Jiang M, Ge H, Fang Q, He B (2017) Prolonged QTc indicates the clinical severity and poor prognosis in patients with isolated left ventricular non-compaction. Int J Cardiovasc Imaging 33(12):2013–2020.  https://doi.org/10.1007/s10554-017-1209-9 Google Scholar
  43. 43.
    Stampfli SF, Erhart L, Hagenbuch N, Stahli BE, Gruner C, Greutmann M, Niemann M, Kaufmann BA, Jenni R, Held L, Tanner FC (2017) Prognostic power of NT-proBNP in left ventricular non-compaction cardiomyopathy. Int J Cardiol 236:321–327.  https://doi.org/10.1016/j.ijcard.2017.02.064 Google Scholar
  44. 44.
    Arenas IA, Mihos CG, DeFaria Yeh D, Yucel E, Elmahdy HM, Santana O (2018) Echocardiographic and clinical markers of left ventricular ejection fraction and moderate or greater systolic dysfunction in left ventricular noncompaction cardiomyopathy. Echocardiography 35(7):941–948.  https://doi.org/10.1111/echo.13873 Google Scholar
  45. 45.
    Stollberger C, Wegner C, Finsterer J (2018) Left ventricular hypertrabeculation/noncompaction, cardiac phenotype, and neuromuscular disorders. Herz.  https://doi.org/10.1007/s00059-018-4695-1 Google Scholar
  46. 46.
    van Waning JI, Caliskan K, Hoedemaekers YM, van Spaendonck-Zwarts KY, Baas AF, Boekholdt SM, van Melle JP, Teske AJ, Asselbergs FW, Backx A, du Marchie Sarvaas GJ, Dalinghaus M, Breur J, Linschoten MPM, Verlooij LA, Kardys I, Dooijes D, Lekanne Deprez RH, AS IJ, van den Berg MP, Hofstra RMW, van Slegtenhorst MA, Jongbloed JDH, Majoor-Krakauer D (2018) Genetics, clinical features, and long-term outcome of noncompaction cardiomyopathy. J Am Coll Cardiol 71(7):711–722.  https://doi.org/10.1016/j.jacc.2017.12.019 Google Scholar
  47. 47.
    Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62(10):1006–1012.  https://doi.org/10.1016/j.jclinepi.2009.06.005 Google Scholar
  48. 48.
    Hozo SP, Djulbegovic B, Hozo I (2005) Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 5:13.  https://doi.org/10.1186/1471-2288-5-13 Google Scholar
  49. 49.
    Schwarzer G (2007) meta: an R package for meta-analysis. R news 7(3):40–45Google Scholar
  50. 50.
    Attenhofer Jost CH, Connolly HM, Warnes CA, O’Leary P, Tajik AJ, Pellikka PA, Seward JB (2004) Noncompacted myocardium in Ebstein’s anomaly: initial description in three patients. J Am Soc Echocardiogr 17(6):677–680.  https://doi.org/10.1016/j.echo.2004.02.013 Google Scholar
  51. 51.
    Schweizer PA, Koenen M, Katus HA, Thomas D (2017) A distinct cardiomyopathy: HCN4 syndrome comprising myocardial noncompaction, bradycardia, mitral valve defects, and aortic dilation. J Am Coll Cardiol 69(9):1209–1210.  https://doi.org/10.1016/j.jacc.2016.10.085 Google Scholar
  52. 52.
    Gati S, Papadakis M, Van Niekerk N, Reed M, Yeghen T, Sharma S (2013) Increased left ventricular trabeculation in individuals with sickle cell anaemia: physiology or pathology? Int J Cardiol 168(2):1658–1660.  https://doi.org/10.1016/j.ijcard.2013.03.039 Google Scholar
  53. 53.
    Miszalski-Jamka K, Jefferies JL, Mazur W, Glowacki J, Hu J, Lazar M, Gibbs RA, Liczko J, Klys J, Venner E, Muzny DM, Rycaj J, Bialkowski J, Kluczewska E, Kalarus Z, Jhangiani S, Al-Khalidi H, Kukulski T, Lupski JR, Craigen WJ, Bainbridge MN (2017) Novel genetic triggers and genotype-phenotype correlations in patients with left ventricular noncompaction. Circ Cardiovasc Genet.  https://doi.org/10.1161/CIRCGENETICS.117.001763 Google Scholar
  54. 54.
    Zemrak F, Ahlman MA, Captur G, Mohiddin SA, Kawel-Boehm N, Prince MR, Moon JC, Hundley WG, Lima JA, Bluemke DA, Petersen SE (2014) The relationship of left ventricular trabeculation to ventricular function and structure over a 9.5-year follow-up: the MESA study. J Am Coll Cardiol 64(19):1971–1980.  https://doi.org/10.1016/j.jacc.2014.08.035 Google Scholar
  55. 55.
    Oechslin E, Jenni R (2018) Left ventricular noncompaction: from physiologic remodeling to noncompaction cardiomyopathy. J Am Coll Cardiol 71(7):723–726.  https://doi.org/10.1016/j.jacc.2017.12.031 Google Scholar
  56. 56.
    Stollberger C, Blazek G, Winkler-Dworak M, Finsterer J (2008) [Sex differences in left ventricular noncompaction in patients with and without neuromuscular disorders]. Rev Esp Cardiol 61(2):130–136Google Scholar
  57. 57.
    Nucifora G, Aquaro GD, Pingitore A, Masci PG, Lombardi M (2011) Myocardial fibrosis in isolated left ventricular non-compaction and its relation to disease severity. Eur J Heart Fail 13(2):170–176.  https://doi.org/10.1093/eurjhf/hfq222 Google Scholar
  58. 58.
    Bertini M, Ziacchi M, Biffi M, Biagini E, Rocchi G, Martignani C, Ferlito M, Pasquale F, Cervi E, Branzi A, Rapezzi C, Boriani G (2011) Effects of cardiac resynchronisation therapy on dilated cardiomyopathy with isolated ventricular non-compaction. Heart 97(4):295–300.  https://doi.org/10.1136/hrt.2010.211607 Google Scholar
  59. 59.
    Kayvanpour E, Katus HA, Meder B (2015) Determined to fail—the role of genetic mechanisms in heart failure. Curr Heart Fail Rep 12(5):333–338.  https://doi.org/10.1007/s11897-015-0264-6 Google Scholar
  60. 60.
    Moric-Janiszewska E, Markiewicz-Loskot G (2008) Genetic heterogeneity of left-ventricular noncompaction cardiomyopathy. Clin Cardiol 31(5):201–204.  https://doi.org/10.1002/clc.20202 Google Scholar
  61. 61.
    Milano A, Vermeer AM, Lodder EM, Barc J, Verkerk AO, Postma AV, van der Bilt IA, Baars MJ, van Haelst PL, Caliskan K, Hoedemaekers YM, Le Scouarnec S, Redon R, Pinto YM, Christiaans I, Wilde AA, Bezzina CR (2014) HCN4 mutations in multiple families with bradycardia and left ventricular noncompaction cardiomyopathy. J Am Coll Cardiol 64(8):745–756.  https://doi.org/10.1016/j.jacc.2014.05.045 Google Scholar
  62. 62.
    Millat G, Janin A, de Tauriac O, Roux A, Dauphin C (2015) HCN4 mutation as a molecular explanation on patients with bradycardia and non-compaction cardiomyopathy. Eur J Med Genet 58(9):439–442.  https://doi.org/10.1016/j.ejmg.2015.06.004 Google Scholar
  63. 63.
    Sedaghat-Hamedani F, Kayvanpour E, Tugrul OF, Lai A, Amr A, Haas J, Proctor T, Ehlermann P, Jensen K, Katus HA, Meder B (2018) Clinical outcomes associated with sarcomere mutations in hypertrophic cardiomyopathy: a meta-analysis on 7675 individuals. Clin Res Cardiol 107(1):30–41.  https://doi.org/10.1007/s00392-017-1155-5 Google Scholar
  64. 64.
    Haas J, Mester S, Lai A, Frese KS, Sedaghat-Hamedani F, Kayvanpour E, Rausch T, Nietsch R, Boeckel JN, Carstensen A, Volkers M, Dietrich C, Pils D, Amr A, Holzer DB, Martins Bordalo D, Oehler D, Weis T, Mereles D, Buss S, Riechert E, Wirsz E, Wuerstle M, Korbel JO, Keller A, Katus HA, Posch AE, Meder B (2018) Genomic structural variations lead to dysregulation of important coding and non-coding RNA species in dilated cardiomyopathy. EMBO Mol Med 10(1):107–120.  https://doi.org/10.15252/emmm.201707838 Google Scholar
  65. 65.
    Cazorla O, Wu Y, Irving TC, Granzier H (2001) Titin-based modulation of calcium sensitivity of active tension in mouse skinned cardiac myocytes. Circ Res 88(10):1028–1035Google Scholar
  66. 66.
    Li S, Guo W, Dewey CN, Greaser ML (2013) Rbm20 regulates titin alternative splicing as a splicing repressor. Nucleic Acids Res 41(4):2659–2672.  https://doi.org/10.1093/nar/gks1362 Google Scholar
  67. 67.
    Schafer S, de Marvao A, Adami E, Fiedler LR, Ng B, Khin E, Rackham OJ, van Heesch S, Pua CJ, Kui M, Walsh R, Tayal U, Prasad SK, Dawes TJ, Ko NS, Sim D, Chan LL, Chin CW, Mazzarotto F, Barton PJ, Kreuchwig F, de Kleijn DP, Totman T, Biffi C, Tee N, Rueckert D, Schneider V, Faber A, Regitz-Zagrosek V, Seidman JG, Seidman CE, Linke WA, Kovalik JP, O’Regan D, Ware JS, Hubner N, Cook SA (2017) Titin-truncating variants affect heart function in disease cohorts and the general population. Nat Genet 49(1):46–53.  https://doi.org/10.1038/ng.3719 Google Scholar
  68. 68.
    Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85(3):1093–1129.  https://doi.org/10.1152/physrev.00006.2004 Google Scholar
  69. 69.
    Neishabouri SH, Hutson SM, Davoodi J (2015) Chronic activation of mTOR complex 1 by branched chain amino acids and organ hypertrophy. Amino Acids 47(6):1167–1182.  https://doi.org/10.1007/s00726-015-1944-y Google Scholar
  70. 70.
    Ware JS, Cook SA (2018) Role of titin in cardiomyopathy: from DNA variants to patient stratification. Nat Rev Cardiol 15(4):241–252.  https://doi.org/10.1038/nrcardio.2017.190 Google Scholar
  71. 71.
    Cao Q, Shen Y, Liu X, Yu X, Yuan P, Wan R, Liu X, Peng X, He W, Pu J, Hong K (2017) Phenotype and functional analyses in a transgenic mouse model of left ventricular noncompaction caused by a DTNA mutation. Int Heart J 58(6):939–947.  https://doi.org/10.1536/ihj.16-019 Google Scholar
  72. 72.
    Phoon CK, Acehan D, Schlame M, Stokes DL, Edelman-Novemsky I, Yu D, Xu Y, Viswanathan N, Ren M (2012) Tafazzin knockdown in mice leads to a developmental cardiomyopathy with early diastolic dysfunction preceding myocardial noncompaction. J Am Heart Assoc.  https://doi.org/10.1161/JAHA.111.000455 Google Scholar
  73. 73.
    Kodo K, Ong SG, Jahanbani F, Termglinchan V, Hirono K, InanlooRahatloo K, Ebert AD, Shukla P, Abilez OJ, Churko JM, Karakikes I, Jung G, Ichida F, Wu SM, Snyder MP, Bernstein D, Wu JC (2016) iPSC-derived cardiomyocytes reveal abnormal TGF-beta signalling in left ventricular non-compaction cardiomyopathy. Nat Cell Biol 18(10):1031–1042.  https://doi.org/10.1038/ncb3411 Google Scholar
  74. 74.
    Anderson RH, Jensen B, Mohun TJ, Petersen SE, Aung N, Zemrak F, Planken RN, MacIver DH (2017) Key questions relating to left ventricular noncompaction cardiomyopathy: is the emperor still wearing any clothes? Can J Cardiol 33(6):747–757.  https://doi.org/10.1016/j.cjca.2017.01.017 Google Scholar
  75. 75.
    Oechslin E, Jenni R (2017) Nosology of noncompaction cardiomyopathy: the emperor still wears clothes! Can J Cardiol 33(6):701–704.  https://doi.org/10.1016/j.cjca.2017.04.003 Google Scholar
  76. 76.
    Gati S, Rajani R, Carr-White GS, Chambers JB (2014) Adult left ventricular noncompaction: reappraisal of current diagnostic imaging modalities. JACC Cardiovasc Imaging 7(12):1266–1275.  https://doi.org/10.1016/j.jcmg.2014.09.005 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Elham Kayvanpour
    • 1
    • 2
  • Farbod Sedaghat-Hamedani
    • 1
    • 2
  • Weng-Tein Gi
    • 1
    • 2
  • Oguz Firat Tugrul
    • 1
    • 2
  • Ali Amr
    • 1
    • 2
  • Jan Haas
    • 1
    • 2
  • Feng Zhu
    • 1
    • 4
  • Philipp Ehlermann
    • 1
  • Lorenz Uhlmann
    • 3
  • Hugo A. Katus
    • 1
    • 2
  • Benjamin Meder
    • 1
    • 2
    • 5
    Email author
  1. 1.Department of Medicine III, Institute for CardiomyopathyUniversity of HeidelbergHeidelbergGermany
  2. 2.DZHK (German Centre for Cardiovascular Research)BerlinGermany
  3. 3.Institute of Medical Biometry and InformaticsUniversity of HeidelbergHeidelbergGermany
  4. 4.Department of Cardiology, Institute of Cardiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  5. 5.Department of Genetics, Stanford Genome Technology CenterStanford University School of MedicineStanfordUSA

Personalised recommendations