Biventricular myocardial strain analysis using cardiac magnetic resonance feature tracking (CMR-FT) in patients with distinct types of right ventricular diseases comparing arrhythmogenic right ventricular cardiomyopathy (ARVC), right ventricular outflow-tract tachycardia (RVOT-VT), and Brugada syndrome (BrS)

  • Philipp HeermannEmail author
  • H. Fritsch
  • M. Koopmann
  • P. Sporns
  • M. Paul
  • W. Heindel
  • E. Schulze-Bahr
  • C. Schülke
Original Paper



As underlying heart diseases of right ventricular tachyarrhythmias, ARVC causes wall-motion abnormalities based on fibrofatty myocardial degeneration, while RVOT-VT and BrS are thought to lack phenotypic MR characteristics. To examine whether cardiac magnetic resonance (CMR) feature tracking (FT) in addition to ARVC objectively facilitates detection of myocardial functional impairments in RVOT-VT and BrS.


Cine MR datasets of four retrospectively enrolled, age-matched study groups [n = 65; 16 ARVC, 26 RVOT-VT, 9 BrS, 14 healthy volunteers (HV)] were independently assessed by two distinctly experienced investigators regarding myocardial function using CMR-FT. Global strain (%) and strainrate (s−1) in radial and longitudinal orientation were assessed at RVOT as well as for left (LV) and right (RV) ventricle at a basal, medial and apical section with the addition of a biventricular circumferential orientation.


RV longitudinal and radial basal strain (%) in ARVC (− 12.9 ± 4.2; 11.4 ± 5.1) were significantly impaired compared to RVOT-VT (− 18.0 ± 2.5, p ≤ 0.005; 16.4 ± 5.2, p ≤ 0.05). Synergistically, RVOT endocardial radial strain (%) in ARVC (33.8 ± 22.7) was significantly lower (p ≤ 0.05) than in RVOT-VT (54.3 ± 14.5). For differentiation against BrS, RV basal and medial radial strain values (%) (13.3 ± 6.1; 11.8 ± 2.9) were significantly reduced when compared to HV (21.0 ± 6.9, p ≤ 0.05; 20.1 ± 6.6, p ≤ 0.005), even in case of a normal RV ejection fraction (EF) (> 45%; n = 6) (12.0 ± 2.7 vs. 20.1 ± 6.6, p ≤ 0.05).


CMR-FT facilitates relevant differentiation in patients with right ventricular tachyarrhythmias: between ARVC against RVOT-VT and HV as well as between BrS with even a preserved EF against HV.


Feature tracking (FT) Myocardial strain analysis Arrhythmogenic right ventricular cardiomyopathy (ARVC) Brugada syndrome (BrS) Right ventricular outflow tract tachycardia (RVOT-VT) 



Arrhythmogenic right ventricular cardiomyopathy


Area under curve


Brugada syndrome


Cardiac magnetic resonance






Ejection fraction


Feature tracking


Left ventricle left ventricular


Left ventricular end diastolic volume index


Left ventricular ejection fraction


Left ventricular end systolic volume index




Receiver operating curve


Right ventricle/right ventricular


Right ventricular end diastolic volume index


Right ventricular ejection fraction


Right ventricular end systolic volume index


Right ventricular outflow tract


Right ventricular outflow tract tachycardia


Short axis


Sudden cardiac death


Ion channel mutation in Brugada syndrome


Standard deviation


Task Force Score


Wall-motion abnormalities

4 CH

Four chamber


Author contributions

WH, ESB and PH initiated the study concept. PH is the corresponding author of the manuscript. PH and HF participated in the myocardial strain analysis. PH and CS participated in the statistical analysis and PH and CS drafted the manuscript. WH, ESB, MP, HF, MK and PS contributed valuable comments and formulations. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Institutional Review Board approval was obtained. The current study obtained approval and consent from the local ethics committee (ethics commission of the medical association Westfalen-Lippe and the medical faculty of the Westfälische-Wilhelms-University (WWU) Muenster; reference number: 2013-632-f-N).

Informed consent

Written informed consent was obtained from all subjects (patients) prior to their inclusion in the study.


  1. 1.
    Riele te ASJM, Tandri H, Bluemke DA (2014) Arrhythmogenic right ventricular cardiomyopathy (ARVC): cardiovascular magnetic resonance update. J Cardiovasc Magn Reson 16:50. CrossRefGoogle Scholar
  2. 2.
    Azaouagh A, Churzidse S, Konorza T, Erbel R (2011) Arrhythmogenic right ventricular cardiomyopathy/dysplasia: a review and update. Clin Res Cardiol 100:383–394. CrossRefGoogle Scholar
  3. 3.
    Marcus FI, McKenna WJ, Sherrill D et al (2010) Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation 121:1533–1541. CrossRefGoogle Scholar
  4. 4.
    Antzelevitch C, Brugada P, Borggrefe M et al (2005) Brugada syndrome: report of the second consensus conference: endorsed by the heart rhythm society and the european heart rhythm association. Circulation 111:659–670CrossRefGoogle Scholar
  5. 5.
    Wilde AAM, Antzelevitch C, Borggrefe M et al (2002) Proposed diagnostic criteria for the Brugada syndrome: consensus report. Circulation 106:2514–2519CrossRefGoogle Scholar
  6. 6.
    Paul M, Schulze-Bahr E, Eckardt L et al (2005) Right ventricular tachyarrhythmias–diagnostics and therapy. Herzschrittmacherther Elektrophysiol 16:260–269. CrossRefGoogle Scholar
  7. 7.
    Basso C, Corrado D, Marcus FI et al (2009) Arrhythmogenic right ventricular cardiomyopathy. Lancet 373:1289–1300. CrossRefGoogle Scholar
  8. 8.
    McKenna WJ, Thiene G, Nava A et al (1994) Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. task force of the working group myocardial and pericardial disease of the european society of cardiology and of the scientific council on cardiomyopathies of the international society and federation of cardiology. Br Heart J 71:215–218CrossRefGoogle Scholar
  9. 9.
    Fairbairn TA, Motwani M, Greenwood JP, Plein S (2012) CMR for the diagnosis of right heart disease. JACC Cardiovasc Imaging 5:227–229. CrossRefGoogle Scholar
  10. 10.
    Riele te ASJM, Tandri H, Sanborn DM, Bluemke DA (2015) Noninvasive multimodality imaging in ARVD/C. JACC Cardiovasc Imaging 8:597–611. CrossRefGoogle Scholar
  11. 11.
    Quarta G, Husain SI, Flett AS et al (2013) Arrhythmogenic right ventricular cardiomyopathy mimics: role of cardiovascular magnetic resonance. J Cardiovasc Magn Reson 15:16. CrossRefGoogle Scholar
  12. 12.
    Heermann P, Hedderich DM, Paul M et al (2014) Biventricular myocardial strain analysis in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) using cardiovascular magnetic resonance feature tracking. J Cardiovasc Magn Reson 16:75. CrossRefGoogle Scholar
  13. 13.
    Marwick TH (2006) Measurement of strain and strain rate by echocardiography: ready for prime time? J Am Coll Cardiol 47:1313–1327. CrossRefGoogle Scholar
  14. 14.
    Sutherland GR, Di Salvo G, Claus P et al (2004) Strain and strain rate imaging: a new clinical approach to quantifying regional myocardial function. J Am Soc Echocardiogr 17:788–802. CrossRefGoogle Scholar
  15. 15.
    Kang Y, Cheng L, Li L et al (2013) Early detection of anthracycline-induced cardiotoxicity using two-dimensional speckle tracking echocardiography. Cardiol J 20:592–599. CrossRefGoogle Scholar
  16. 16.
    Hilde JM, Skjørten I, Grøtta OJ et al (2013) Right ventricular dysfunction and remodeling in chronic obstructive pulmonary disease without pulmonary hypertension. J Am Coll Cardiol 62:1103–1111. CrossRefGoogle Scholar
  17. 17.
    Tadic M, Majstorovic A, Pencic B et al (2014) The impact of high-normal blood pressure on left ventricular mechanics: a three-dimensional and speckle tracking echocardiography study. Int J Cardiovasc Imaging 30:699–711. CrossRefGoogle Scholar
  18. 18.
    Zoroufian A, Razmi T, Taghavi-Shavazi M et al (2014) Evaluation of subclinical left ventricular dysfunction in diabetic patients: longitudinal strain velocities and left ventricular dyssynchrony by two-dimensional speckle tracking echocardiography study. Echocardiography 31:456–463. CrossRefGoogle Scholar
  19. 19.
    Saccheri MC, Cianciulli TF, Lax JA et al (2013) Two-dimensional speckle tracking echocardiography for early detection of myocardial damage in young patients with fabry disease. Echocardiography 30:1069–1077. Google Scholar
  20. 20.
    Cusmà Piccione M, Zito C, Bagnato G et al (2013) Role of 2D strain in the early identification of left ventricular dysfunction and in the risk stratification of systemic sclerosis patients. Cardiovasc Ultrasound 11:6. CrossRefGoogle Scholar
  21. 21.
    Markowitz SM, Weinsaft JW, Waldman L et al (2014) Reappraisal of cardiac magnetic resonance imaging in idiopathic outflow tract arrhythmias. J Cardiovasc Electrophysiol 25:1328–1335. Google Scholar
  22. 22.
    Decher N, Ortiz-Bonnin B, Friedrich C et al (2017) Sodium permeable and “hypersensitive” TREK-1 channels cause ventricular tachycardia. EMBO Mol Med 9:403–414. CrossRefGoogle Scholar
  23. 23.
    Brugada P, Brugada J (1992) Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome: a multicenter report. J Am Coll Cardiol 20:1391–1396CrossRefGoogle Scholar
  24. 24.
    Antzelevitch C, Nof E (2008) Brugada syndrome: recent advances and controversies. Curr Cardiol Rep 10:376–383CrossRefGoogle Scholar
  25. 25.
    Brugada R, Brugada J, Antzelevitch C et al (2000) Sodium channel blockers identify risk for sudden death in patients with ST-segment elevation and right bundle branch block but structurally normal hearts. Circulation 101:510–515CrossRefGoogle Scholar
  26. 26.
    Priori SG, Wilde AA, Horie M et al (2013) HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm 10:1932–1963. CrossRefGoogle Scholar
  27. 27.
    Catalano O, Antonaci S, Moro G et al (2009) Magnetic resonance investigations in Brugada syndrome reveal unexpectedly high rate of structural abnormalities. Eur Heart J 30:2241–2248. CrossRefGoogle Scholar
  28. 28.
    Rudic B, Schimpf R, Veltmann C et al (2016) Brugada syndrome: clinical presentation and genotype-correlation with magnetic resonance imaging parameters. Europace 18:1411–1419. CrossRefGoogle Scholar
  29. 29.
    Iacoviello M, Forleo C, Puzzovivo A et al (2011) Altered two-dimensional strain measures of the right ventricle in patients with Brugada syndrome and arrhythmogenic right ventricular dysplasia/cardiomyopathy. Eur J Echocardiogr 12:773–781. CrossRefGoogle Scholar
  30. 30.
    Hor KN, Gottliebson WM, Carson C et al (2010) Comparison of magnetic resonance feature tracking for strain calculation with harmonic phase imaging analysis. JACC Cardiovasc Imaging 3:144–151. CrossRefGoogle Scholar
  31. 31.
    Hor KN, Baumann R, Pedrizzetti G et al (2011) Magnetic resonance derived myocardial strain assessment using feature tracking. J Vis Exp. Google Scholar
  32. 32.
    Orwat S, Kempny A, Diller G-P et al (2014) Cardiac magnetic resonance feature tracking: a novel method to assess myocardial strain. Comparison with echocardiographic speckle tracking in healthy volunteers and in patients with left ventricular hypertrophy. Kardiol Pol 72:363–371. CrossRefGoogle Scholar
  33. 33.
    Kempny A, Fernández-Jiménez R, Orwat S et al (2012) Quantification of biventricular myocardial function using cardiac magnetic resonance feature tracking, endocardial border delineation and echocardiographic speckle tracking in patients with repaired tetralogy of fallot and healthy controls. J Cardiovasc Magn Reson 14:32. CrossRefGoogle Scholar
  34. 34.
    Kempny A, Diller G-P, Orwat S et al (2012) Right ventricular-left ventricular interaction in adults with tetralogy of fallot: a combined cardiac magnetic resonance and echocardiographic speckle tracking study. Int J Cardiol 154:259–264. CrossRefGoogle Scholar
  35. 35.
    Schuster A, Kutty S, Padiyath A et al (2011) Cardiovascular magnetic resonance myocardial feature tracking detects quantitative wall motion during dobutamine stress. J Cardiovasc Magn Reson 13:58. CrossRefGoogle Scholar
  36. 36.
    Schuster A, Paul M, Bettencourt N et al (2013) Cardiovascular magnetic resonance myocardial feature tracking for quantitative viability assessment in ischemic cardiomyopathy. Int J Cardiol 166:413–420. CrossRefGoogle Scholar
  37. 37.
    Maret E, Todt T, Brudin L et al (2009) Functional measurements based on feature tracking of cine magnetic resonance images identify left ventricular segments with myocardial scar. Cardiovasc Ultrasound 7:53. CrossRefGoogle Scholar
  38. 38.
    Kutty S, Rangamani S, Venkataraman J et al (2013) Reduced global longitudinal and radial strain with normal left ventricular ejection fraction late after effective repair of aortic coarctation: a CMR feature tracking study. Int J Cardiovasc Imaging 29:141–150. CrossRefGoogle Scholar
  39. 39.
    Vigneault DM, Riele te ASJM, James CA et al (2015) Right ventricular strain by MR quantitatively identifies regional dysfunction in patients with arrhythmogenic right ventricular cardiomyopathy. J Magn Reson Imaging 43:1132–1139. CrossRefGoogle Scholar
  40. 40.
    Prati G, Vitrella G, Allocca G et al (2015) Right ventricular strain and dyssynchrony assessment in arrhythmogenic right ventricular cardiomyopathy: cardiac magnetic resonance feature-tracking study. Circ Cardiovasc Imaging. Google Scholar
  41. 41.
    Marcus FI, McKenna WJ, Sherrill D et al (2010) Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the Task Force Criteria. Eur Heart J 31(7):806–814CrossRefGoogle Scholar
  42. 42.
    Teske AJ, Cox MGPJ, Riele te ASJM et al (2012) Early detection of regional functional abnormalities in asymptomatic ARVD/C gene carriers. J Am Soc Echocardiogr 25:997–1006. CrossRefGoogle Scholar
  43. 43.
    Teske AJ, Cox MG, De Boeck BW et al (2009) Echocardiographic tissue deformation imaging quantifies abnormal regional right ventricular function in arrhythmogenic right ventricular dysplasia/cardiomyopathy. J Am Soc Echocardiogr 22:920–927. CrossRefGoogle Scholar
  44. 44.
    Aneq M, Engvall J, Brudin L, Nylander E (2012) Evaluation of right and left ventricular function using speckle tracking echocardiography in patients with arrhythmogenic right ventricular cardiomyopathy and their first degree relatives. Cardiovasc Ultrasound 10:37. CrossRefGoogle Scholar
  45. 45.
    Tessa C, Del Meglio J, Ghidini Ottonelli A et al (2012) Evaluation of Brugada syndrome by cardiac magnetic resonance. Int J Cardiovasc Imaging 28:1961–1970. CrossRefGoogle Scholar
  46. 46.
    Murata K, Ueyama T, Tanaka T et al (2011) Right ventricular dysfunction in patients with Brugada-like electrocardiography: a two dimensional strain imaging study. Cardiovasc Ultrasound 9:30. CrossRefGoogle Scholar
  47. 47.
    Buckert D, Cieslik M, Tibi R et al (2017) Longitudinal strain assessed by cardiac magnetic resonance correlates to hemodynamic findings in patients with severe aortic stenosis and predicts positive remodeling after transcatheter aortic valve replacement. Clin Res Cardiol 107:20–29. CrossRefGoogle Scholar
  48. 48.
    Sen-Chowdhry S, Syrris P, Prasad SK et al (2008) Left-dominant arrhythmogenic cardiomyopathy: an under-recognized clinical entity. J Am Coll Cardiol 52:2175–2187. CrossRefGoogle Scholar
  49. 49.
    Jain A, Shehata ML, Stuber M et al (2010) Prevalence of left ventricular regional dysfunction in arrhythmogenic right ventricular dysplasia: a tagged MRI study. Circ Cardiovasc Imaging 3:290–297. CrossRefGoogle Scholar
  50. 50.
    Riele te ASJM, James CA, Philips B et al (2013) Mutation-positive arrhythmogenic right ventricular dysplasia/cardiomyopathy: the triangle of dysplasia displaced. J Cardiovasc Electrophysiol 24:1311–1320. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center of Radiology, Neuroradiology and Nuclear MedicineClemens Hospital MuensterMuensterGermany
  2. 2.Department of Clinical RadiologyUniversity Hospital MuensterMuensterGermany
  3. 3.Department of Cardiology and AngiologyUniversity Hospital MuensterMuensterGermany
  4. 4.Division of Cardiology, Department of Cardiovascular MedicineUniversity Hospital MuensterMuensterGermany
  5. 5.Institute for Genetics of Heart Diseases, Department of Cardiovascular MedicineUniversity Hospital MuensterMuensterGermany

Personalised recommendations