Advertisement

Clinical Research in Cardiology

, Volume 108, Issue 9, pp 1059–1068 | Cite as

Qualitative and quantitative neointimal characterization by optical coherence tomography in patients presenting with in-stent restenosis

  • Erion XhepaEmail author
  • Robert A. Byrne
  • Fernando Rivero
  • Andi Rroku
  • Javier Cuesta
  • Gjin Ndrepepa
  • Sebastian Kufner
  • Teresa Bastante Valiente
  • Salvatore Cassese
  • Marcos Garcia-Guimaraes
  • Anna Lena Lahmann
  • Himanshu Rai
  • Heribert Schunkert
  • Michael Joner
  • María José Pérez-Vizcayno
  • Nieves Gonzalo
  • Fernando Alfonso
  • Adnan Kastrati
Original Paper

Abstract

Aims

To describe optical coherence tomography (OCT) findings in patients with in-stent restenosis (ISR) and determine predictors of neointimal patterns and neoatherosclerosis.

Methods and results

Patients undergoing OCT prior to PCI for ISR in three European centres were included. Analyses were performed in a core laboratory. Qualitative and quantitative [gray-scale signal intensity (GSI)] neointima analyses were performed on a per quadrant basis. A total of 107 patients were included. Predominantly homogeneous lesions included 4.5% (0.0–14.3) non-homogeneous quadrants, while predominantly non-homogeneous ones included 28.1% (20.3–37.5) homogeneous quadrants. Mean GSI values differed significantly between homogeneous [108.4 (92.5–123.6)], non-homogeneous [79.9 (61.2–95.9)], and neoatherosclerosis [88.3 (72.8–104.9)] quadrants (p < 0.001 for all comparisons). Stent underexpansion was observed in 48.5% and 61.1% of lesions, respectively (p = 0.225). Female sex and maximal neointimal thickness independently correlate with a non-homogeneous pattern, while angiographic pattern and diabetes mellitus inversely correlate with such pattern. Time from index stenting procedure was the only independent predictor of neoatherosclerosis.

Conclusions

Different neointimal patterns coexist in a significant proportion of ISR lesions. GSI values differ significantly between neointimal categories. Neoatherosclerosis is a time-dependent phenomenon, displaying different time courses in DES compared to BMS, with earlier appearance in the former group. Stent underexpansion is a frequent finding in patients with ISR.

Keywords

Optical coherence tomography In-stent restenosis Neoatherosclerosis Neointimal characterization Gray-scale signal intensity analysis 

Notes

Funding

None.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.

Supplementary material

392_2019_1439_MOESM1_ESM.docx (35 kb)
Supplementary material 1 (DOCX 35 KB)

References

  1. 1.
    Cassese S, Byrne RA, Tada T, Pinieck S, Joner M, Ibrahim T, King LA, Fusaro M, Laugwitz KL, Kastrati A (2014) Incidence and predictors of restenosis after coronary stenting in 10 004 patients with surveillance angiography. Heart 100(2):153–159.  https://doi.org/10.1136/heartjnl-2013-304933 CrossRefGoogle Scholar
  2. 2.
    Werner N, Nickenig G, Sinning JM (2018) Complex PCI procedures: challenges for the interventional cardiologist. Clin Res Cardiol 107(Suppl 2):64–73.  https://doi.org/10.1007/s00392-018-1316-1 CrossRefGoogle Scholar
  3. 3.
    Gonzalo N, Serruys PW, Okamura T, van Beusekom HM, Garcia-Garcia HM, van Soest G, van der Giessen W, Regar E (2009) Optical coherence tomography patterns of stent restenosis. Am Heart J 158(2):284–293.  https://doi.org/10.1016/j.ahj.2009.06.004 CrossRefGoogle Scholar
  4. 4.
    Kufner S, Xhepa E, Lutter C, Cassese S, Joner M (2017) Optical coherence tomography in drugeluting stent restenosis: a technique in need of a strategy. Minerva Cardioangiol 65(1):61–67.  https://doi.org/10.23736/S0026-4725.16.04241-9 Google Scholar
  5. 5.
    Lutter C, Mori H, Yahagi K, Ladich E, Joner M, Kutys R, Fowler D, Romero M, Narula J, Virmani R, Finn AV (2016) Histopathological differential diagnosis of optical coherence tomographic image interpretation after stenting. JACC Cardiovasc Interv 9(24):2511–2523.  https://doi.org/10.1016/j.jcin.2016.09.016 CrossRefGoogle Scholar
  6. 6.
    Joner M, Finn AV, Farb A, Mont EK, Kolodgie FD, Ladich E, Kutys R, Skorija K, Gold HK, Virmani R (2006) Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol 48(1):193–202.  https://doi.org/10.1016/j.jacc.2006.03.042 CrossRefGoogle Scholar
  7. 7.
    Nakano M, Otsuka F, Yahagi K, Sakakura K, Kutys R, Ladich ER, Finn AV, Kolodgie FD, Virmani R (2013) Human autopsy study of drug-eluting stents restenosis: histomorphological predictors and neointimal characteristics. Eur Heart J 34(42):3304–3313.  https://doi.org/10.1093/eurheartj/eht241 CrossRefGoogle Scholar
  8. 8.
    Habara M, Terashima M, Nasu K, Kaneda H, Inoue K, Ito T, Kamikawa S, Kurita T, Tanaka N, Kimura M, Kinoshita Y, Tsuchikane E, Matsuo H, Ueno K, Katoh O, Suzuki T (2011) Difference of tissue characteristics between early and very late restenosis lesions after bare-metal stent implantation: an optical coherence tomography study. Circ Cardiovasc Interv 4(3):232–238.  https://doi.org/10.1161/CIRCINTERVENTIONS.110.959999 CrossRefGoogle Scholar
  9. 9.
    Goto K, Takebayashi H, Kihara Y, Hagikura A, Fujiwara Y, Kikuta Y, Sato K, Kodama S, Taniguchi M, Hiramatsu S, Haruta S (2013) Appearance of neointima according to stent type and restenotic phase: analysis by optical coherence tomography. EuroIntervention 9(5):601–607.  https://doi.org/10.4244/EIJV9I5A96 CrossRefGoogle Scholar
  10. 10.
    Song L, Mintz GS, Yin D, Yamamoto MH, Chin CY, Matsumura M, Kirtane AJ, Parikh MA, Moses JW, Ali ZA, Shlofmitz RA, Maehara A (2017) Characteristics of early versus late in-stent restenosis in second-generation drug-eluting stents: an optical coherence tomography study. EuroIntervention.  https://doi.org/10.4244/EIJ-D-16-00787 Google Scholar
  11. 11.
    Mehran R, Dangas G, Abizaid AS, Mintz GS, Lansky AJ, Satler LF, Pichard AD, Kent KM, Stone GW, Leon MB (1999) Angiographic patterns of in-stent restenosis: classification and implications for long-term outcome. Circulation 100(18):1872–1878CrossRefGoogle Scholar
  12. 12.
    Otsuka F, Byrne RA, Yahagi K, Mori H, Ladich E, Fowler DR, Kutys R, Xhepa E, Kastrati A, Virmani R, Joner M (2015) Neoatherosclerosis: overview of histopathologic findings and implications for intravascular imaging assessment. Eur Heart J 36(32):2147–2159.  https://doi.org/10.1093/eurheartj/ehv205 CrossRefGoogle Scholar
  13. 13.
    Malle C, Tada T, Steigerwald K, Ughi GJ, Schuster T, Nakano M, Massberg S, Jehle J, Guagliumi G, Kastrati A, Virmani R, Byrne RA, Joner M (2013) Tissue characterization after drug-eluting stent implantation using optical coherence tomography. Arterioscler Thromb Vasc Biol 33(6):1376–1383.  https://doi.org/10.1161/ATVBAHA.113.301227 CrossRefGoogle Scholar
  14. 14.
    Koppara T, Tada T, Xhepa E, Kufner S, Byrne RA, Ibrahim T, Laugwitz KL, Kastrati A, Joner M (2018) Randomised comparison of vascular response to biodegradable polymer sirolimus eluting and permanent polymer everolimus eluting stents: an optical coherence tomography study. Int J Cardiol 258:42–49.  https://doi.org/10.1016/j.ijcard.2018.01.011 CrossRefGoogle Scholar
  15. 15.
    Tibshirani R (1997) The lasso method for variable selection in the Cox model. Stat Med 16(4):385–395CrossRefGoogle Scholar
  16. 16.
    Alfonso F, Byrne RA, Rivero F, Kastrati A (2014) Current treatment of in-stent restenosis. J Am Coll Cardiol 63(24):2659–2673.  https://doi.org/10.1016/j.jacc.2014.02.545 CrossRefGoogle Scholar
  17. 17.
    Colleran R, Kastrati A (2018) Percutaneous coronary intervention: balloons, stents and scaffolds. Clin Res Cardiol 107(Suppl 2):55–63.  https://doi.org/10.1007/s00392-018-1328-x CrossRefGoogle Scholar
  18. 18.
    Tada T, Kadota K, Hosogi S, Miyake K, Ohya M, Amano H, Izawa Y, Kanazawa T, Kubo S, Ichinohe T, Hyoudou Y, Hayakawa Y, Sabbah MM, Otsuru S, Hasegawa D, Habara S, Tanaka H, Fuku Y, Katoh H, Goto T, Mitsudo K (2015) Association between tissue characteristics assessed with optical coherence tomography and mid-term results after percutaneous coronary intervention for in-stent restenosis lesions: a comparison between balloon angioplasty, paclitaxel-coated balloon dilatation, and drug-eluting stent implantation. Eur Heart J Cardiovasc Imaging 16(10):1101–1111.  https://doi.org/10.1093/ehjci/jev031 CrossRefGoogle Scholar
  19. 19.
    Sakakura K, Joner M, Virmani R (2014) Does neointimal characterization following DES implantation predict long-term outcomes? JACC Cardiovasc Imaging 7(8):796–798.  https://doi.org/10.1016/j.jcmg.2014.06.002 CrossRefGoogle Scholar
  20. 20.
    Rheude TA, Xhepa E, Byrne RA (2017) Markedly different tissue types on optical coherence tomography imaging in a patient with multiple lesion drug-eluting stent in-stent restenosis. Catheter Cardiovasc Interv 89(6):E181–E184.  https://doi.org/10.1002/ccd.26694 CrossRefGoogle Scholar
  21. 21.
    Adriaenssens T, Joner M, Godschalk TC, Malik N, Alfonso F, Xhepa E, De Cock D, Komukai K, Tada T, Cuesta J, Sirbu V, Feldman LJ, Neumann FJ, Goodall AH, Heestermans T, Buysschaert I, Hlinomaz O, Belmans A, Desmet W, Ten Berg JM, Gershlick AH, Massberg S, Kastrati A, Guagliumi G, Byrne RA (2017) Prevention of late stent thrombosis by an interdisciplinary global european effort. Optical coherence tomography findings in patients with coronary stent thrombosis: a report of the PRESTIGE consortium (prevention of late stent thrombosis by an interdisciplinary global european effort). Circulation 136(11):1007–1021.  https://doi.org/10.1161/CIRCULATIONAHA.117.026788 CrossRefGoogle Scholar
  22. 22.
    Alfonso F, Fernandez-Vina F, Medina M, Hernandez R (2013) Neoatherosclerosis: the missing link between very late stent thrombosis and very late in-stent restenosis. J Am Coll Cardiol 61(12):e155.  https://doi.org/10.1016/j.jacc.2012.09.071 CrossRefGoogle Scholar
  23. 23.
    Otsuka F, Vorpahl M, Nakano M, Foerst J, Newell JB, Sakakura K, Kutys R, Ladich E, Finn AV, Kolodgie FD, Virmani R (2014) Pathology of second-generation everolimus-eluting stents versus first-generation sirolimus- and paclitaxel-eluting stents in humans. Circulation 129(2):211–223.  https://doi.org/10.1161/CIRCULATIONAHA.113.001790 CrossRefGoogle Scholar
  24. 24.
    Nakazawa G, Otsuka F, Nakano M, Vorpahl M, Yazdani SK, Ladich E, Kolodgie FD, Finn AV, Virmani R (2011) The pathology of neoatherosclerosis in human coronary implants bare-metal and drug-eluting stents. J Am Coll Cardiol 57(11):1314–1322.  https://doi.org/10.1016/j.jacc.2011.01.011 CrossRefGoogle Scholar
  25. 25.
    Miura K, Tada T, Habara S, Kuwayama A, Shimada T, Ohya M, Murai R, Amano H, Kubo S, Otsuru S, Tanaka H, Fuku Y, Goto T, Kadota K (2018) Optical coherence tomography predictors for recurrent restenosis after paclitaxel-coated balloon angioplasty for drug-eluting stent restenosis. Circ J.  https://doi.org/10.1253/circj.CJ-18-0464 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Erion Xhepa
    • 1
    Email author
  • Robert A. Byrne
    • 1
  • Fernando Rivero
    • 2
  • Andi Rroku
    • 1
  • Javier Cuesta
    • 2
  • Gjin Ndrepepa
    • 1
  • Sebastian Kufner
    • 1
  • Teresa Bastante Valiente
    • 2
  • Salvatore Cassese
    • 1
  • Marcos Garcia-Guimaraes
    • 2
  • Anna Lena Lahmann
    • 1
  • Himanshu Rai
    • 1
  • Heribert Schunkert
    • 1
    • 4
  • Michael Joner
    • 1
    • 4
  • María José Pérez-Vizcayno
    • 3
  • Nieves Gonzalo
    • 3
  • Fernando Alfonso
    • 2
  • Adnan Kastrati
    • 1
    • 4
  1. 1.Deutsches Herzzentrum München, Klinik an der Technischen Universität MünchenMunichGermany
  2. 2.Hospital Universitario de La PrincesaMadridSpain
  3. 3.Hospital Universitario Clínico San CarlosMadridSpain
  4. 4.DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart AllianceMunichGermany

Personalised recommendations