Stress T1-mapping cardiovascular magnetic resonance imaging and inducible myocardial ischemia
- 46 Downloads
Abstract
Background
Alterations in native myocardial T1 under vasodilation stress (“T1 reactivity”) were recently proposed as a non-contrast cardiovascular magnetic resonance (CMR) method to detect myocardial ischemia. This study evaluated the performance of a segmental, truly non-contrast stress T1 mapping CMR approach to detect inducible ischemia.
Methods and results
One-hundred patients with suspected/known coronary artery disease underwent CMR at 3.0 or 1.5 T. T1 mapping was performed using the 5s(3s)3s-modified look-locker inversion-recovery (MOLLI) sequence at rest and under regadenoson stress. We defined T1 reactivity as the change in native T1 from rest to stress (1) in the 16-segment AHA model independent from perfusion images and (2) in focal regions of interest that were copied from perfusion images to T1 maps. We compared T1 reactivity between segments/regions with inducible ischemia, scar, and remote myocardium for both approaches. Segmental T1 reactivity was significantly lower in segments including inducible ischemia [− 1.15 (95% CI, − 2.16 to − 0.14)%] compared to remote segments [2.49 (95% CI, 1.87 to 3.11)%; p < 0.001]. Focal T1 reactivity was also significantly lower [− 2.65 (95% CI, − 3.84 to − 1.46)%] in regions with stress-perfusion defects compared to remote regions [4.72 (95% CI, 3.90 to 5.54)%; p < 0.001]. However, the performance of segmental T1 reactivity to depict inducible ischemia was significantly inferior compared to the focal approach (AUCs 0.68 versus 0.85; p < 0.0001).
Conclusions
Myocardium with inducible ischemia is characterized by the absence of significant T1 reactivity, but a clinically applicable approach for truly non-contrast stress T1 mapping remains to be determined.
Keywords
T1 mapping T1 reactivity CMR IschemiaNotes
Compliance with ethical standards
Conflict of interest
Dr. Stehning is an employee of Philips Research, Hamburg, Germany. The other authors report no conflicts.
References
- 1.Rieber J, Huber A, Erhard I, Mueller S, Schweyer M, Koenig A, Schiele TM, Theisen K, Siebert U, Schoenberg SO, Reiser M, Klauss V (2006) Cardiac magnetic resonance perfusion imaging for the functional assessment of coronary artery disease: a comparison with coronary angiography and fractional flow reserve. Eur Heart J 27(12):1465–1471. https://doi.org/10.1093/eurheartj/ehl039 CrossRefGoogle Scholar
- 2.Task Force M, Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, Bugiardini R, Crea F, Cuisset T, Di Mario C, Ferreira JR, Gersh BJ, Gitt AK, Hulot JS, Marx N, Opie LH, Pfisterer M, Prescott E, Ruschitzka F, Sabate M, Senior R, Taggart DP, van der Wall EE, Vrints CJ, Guidelines ESCCfP, Zamorano JL, Achenbach S, Baumgartner H, Bax JJ, Bueno H, Dean V, Deaton C, Erol C, Fagard R, Ferrari R, Hasdai D, Hoes AW, Kirchhof P, Knuuti J, Kolh P, Lancellotti P, Linhart A, Nihoyannopoulos P, Piepoli MF, Ponikowski P, Sirnes PA, Tamargo JL, Tendera M, Torbicki A, Wijns W, Windecker S, Document R, Knuuti J, Valgimigli M, Bueno H, Claeys MJ, Donner-Banzhoff N, Erol C, Frank H, Funck-Brentano C, Gaemperli O, Gonzalez-Juanatey JR, Hamilos M, Hasdai D, Husted S, James SK, Kervinen K, Kolh P, Kristensen SD, Lancellotti P, Maggioni AP, Piepoli MF, Pries AR, Romeo F, Ryden L, Simoons ML, Sirnes PA, Steg PG, Timmis A, Wijns W, Windecker S, Yildirir A, Zamorano JL (2013) 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 34(38):2949–3003. https://doi.org/10.1093/eurheartj/eht296 CrossRefGoogle Scholar
- 3.Lockie T, Ishida M, Perera D, Chiribiri A, De Silva K, Kozerke S, Marber M, Nagel E, Rezavi R, Redwood S, Plein S (2011) High-resolution magnetic resonance myocardial perfusion imaging at 3.0-Tesla to detect hemodynamically significant coronary stenoses as determined by fractional flow reserve. J Am Coll Cardiol 57(1):70–75. https://doi.org/10.1016/j.jacc.2010.09.019 CrossRefGoogle Scholar
- 4.Manka R, Wissmann L, Gebker R, Jogiya R, Motwani M, Frick M, Reinartz S, Schnackenburg B, Niemann M, Gotschy A, Kuhl C, Nagel E, Fleck E, Marx N, Luescher TF, Plein S, Kozerke S (2015) Multicenter evaluation of dynamic three-dimensional magnetic resonance myocardial perfusion imaging for the detection of coronary artery disease defined by fractional flow reserve. Circ Cardiovasc Imaging 8:5. https://doi.org/10.1161/CIRCIMAGING.114.003061 CrossRefGoogle Scholar
- 5.Shah R, Heydari B, Coelho-Filho O, Murthy VL, Abbasi S, Feng JH, Pencina M, Neilan TG, Meadows JL, Francis S, Blankstein R, Steigner M, di Carli M, Jerosch-Herold M, Kwong RY (2013) Stress cardiac magnetic resonance imaging provides effective cardiac risk reclassification in patients with known or suspected stable coronary artery disease. Circulation 128(6):605–614. https://doi.org/10.1161/CIRCULATIONAHA.113.001430 CrossRefGoogle Scholar
- 6.Vincenti G, Masci PG, Monney P, Rutz T, Hugelshofer S, Gaxherri M, Muller O, Iglesias JF, Eeckhout E, Lorenzoni V, Pellaton C, Sierro C, Schwitter J (2017) Stress perfusion CMR in patients with known and suspected CAD: prognostic value and optimal ischemic threshold for revascularization. JACC Cardiovasc Imaging 10(5):526–537. https://doi.org/10.1016/j.jcmg.2017.02.006 CrossRefGoogle Scholar
- 7.Hendel RC, Friedrich MG, Schulz-Menger J, Zemmrich C, Bengel F, Berman DS, Camici PG, Flamm SD, Le Guludec D, Kim R, Lombardi M, Mahmarian J, Sechtem U, Nagel E (2016) CMR first-pass perfusion for suspected inducible myocardial ischemia. JACC Cardiovasc Imaging 9(11):1338–1348. https://doi.org/10.1016/j.jcmg.2016.09.010 CrossRefGoogle Scholar
- 8.Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, Bijsterveld P, Ridgway JP, Radjenovic A, Dickinson CJ, Ball SG, Plein S (2012) Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet 379(9814):453–460. https://doi.org/10.1016/S0140-6736(11)61335-4 CrossRefGoogle Scholar
- 9.Schwitter J, Wacker CM, van Rossum AC, Lombardi M, Al-Saadi N, Ahlstrom H, Dill T, Larsson HB, Flamm SD, Marquardt M, Johansson L (2008) MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur Heart J 29(4):480–489. https://doi.org/10.1093/eurheartj/ehm617 CrossRefGoogle Scholar
- 10.Schwitter J, Wacker CM, Wilke N, Al-Saadi N, Sauer E, Huettle K, Schonberg SO, Debl K, Strohm O, Ahlstrom H, Dill T, Hoebel N, Simor T, investigators M-I (2012) Superior diagnostic performance of perfusion-cardiovascular magnetic resonance versus SPECT to detect coronary artery disease: the secondary endpoints of the multicenter multivendor MR-IMPACT II (magnetic resonance imaging for myocardial perfusion assessment in coronary artery disease trial). J Cardiovasc Magn Reson 14:61. https://doi.org/10.1186/1532-429X-14-61 CrossRefGoogle Scholar
- 11.Gulani V, Calamante F, Shellock FG, Kanal E, Reeder SB, International Society for Magnetic Resonance in M (2017) Gadolinium deposition in the brain: summary of evidence and recommendations. Lancet Neurol 16(7):564–570. https://doi.org/10.1016/S1474-4422(17)30158-8 CrossRefGoogle Scholar
- 12.Liu A, Wijesurendra RS, Francis JM, Robson MD, Neubauer S, Piechnik SK, Ferreira VM (2016) Adenosine stress and rest T1 mapping can differentiate between ischemic, infarcted, remote, and normal myocardium without the need for gadolinium contrast agents. JACC Cardiovasc Imaging 9(1):27–36. https://doi.org/10.1016/j.jcmg.2015.08.018 CrossRefGoogle Scholar
- 13.Judd RM, Levy BI (1991) Effects of barium-induced cardiac contraction on large- and small-vessel intramyocardial blood volume. Circ Res 68(1):217–225CrossRefGoogle Scholar
- 14.McCommis KS, Zhang H, Goldstein TA, Misselwitz B, Abendschein DR, Gropler RJ, Zheng J (2009) Myocardial blood volume is associated with myocardial oxygen consumption: an experimental study with cardiac magnetic resonance in a canine model. JACC Cardiovasc Imaging 2(11):1313–1320. https://doi.org/10.1016/j.jcmg.2009.07.010 CrossRefGoogle Scholar
- 15.Wacker CM, Bauer WR (2003) Myocardial microcirculation in humans—new approaches using MRI. Herz 28(2):74–81. https://doi.org/10.1007/s00059-003-2451-6 CrossRefGoogle Scholar
- 16.Piechnik SK, Neubauer S, Ferreira VM (2017) State-of-the-art review: stress T1 mapping-technical considerations, pitfalls and emerging clinical applications. MAGMA. https://doi.org/10.1007/s10334-017-0649-5 Google Scholar
- 17.Kuijpers D, Prakken NH, Vliegenthart R, van Dijkman PR, van der Harst P, Oudkerk M (2016) Caffeine intake inverts the effect of adenosine on myocardial perfusion during stress as measured by T1 mapping. Int J Cardiovasc Imaging 32(10):1545–1553. https://doi.org/10.1007/s10554-016-0949-2 CrossRefGoogle Scholar
- 18.Liu A, Wijesurendra RS, Liu JM, Greiser A, Jerosch-Herold M, Forfar JC, Channon KM, Piechnik SK, Neubauer S, Kharbanda RK, Ferreira VM (2018) Gadolinium-free cardiac MR stress T1-mapping to distinguish epicardial from microvascular coronary disease. J Am Coll Cardiol 71(9):957–968. https://doi.org/10.1016/j.jacc.2017.11.071 CrossRefGoogle Scholar
- 19.Riffel JH, Schmucker K, Andre F, Ochs M, Hirschberg K, Schaub E, Fritz T, Mueller-Hennessen M, Giannitsis E, Katus HA, Friedrich MG (2018) Cardiovascular magnetic resonance of cardiac morphology and function: impact of different strategies of contour drawing and indexing. Clin Res Cardiol. https://doi.org/10.1007/s00392-018-1371-7 Google Scholar
- 20.Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, Kim RJ, von Knobelsdorff-Brenkenhoff F, Kramer CM, Pennell DJ, Plein S, Nagel E (2013) Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing. J Cardiovasc Magn Reson 15:35. https://doi.org/10.1186/1532-429X-15-35 CrossRefGoogle Scholar
- 21.Messroghli DR, Moon JC, Ferreira VM, Grosse-Wortmann L, He T, Kellman P, Mascherbauer J, Nezafat R, Salerno M, Schelbert EB, Taylor AJ, Thompson R, Ugander M, van Heeswijk RB, Friedrich MG (2017) Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson 19(1):75. https://doi.org/10.1186/s12968-017-0389-8 CrossRefGoogle Scholar
- 22.Buckert D, Dewes P, Walcher T, Rottbauer W, Bernhardt P (2013) Intermediate-term prognostic value of reversible perfusion deficit diagnosed by adenosine CMR: a prospective follow-up study in a consecutive patient population. JACC Cardiovasc Imaging 6(1):56–63. https://doi.org/10.1016/j.jcmg.2012.08.011 CrossRefGoogle Scholar
- 23.Buckert D, Kelle S, Buss S, Korosoglou G, Gebker R, Birkemeyer R, Rottbauer W, Katus H, Pieske B, Bernhardt P (2017) Left ventricular ejection fraction and presence of myocardial necrosis assessed by cardiac magnetic resonance imaging correctly risk stratify patients with stable coronary artery disease: a multi-center all-comers trial. Clin Res Cardiol 106(3):219–229. https://doi.org/10.1007/s00392-016-1042-5 CrossRefGoogle Scholar
- 24.Greulich S, Kindermann I, Schumm J, Perne A, Birkmeier S, Grun S, Ong P, Schaufele T, Klingel K, Schneider S, Kandolf R, Bohm M, Sechtem U, Mahrholdt H (2016) Predictors of outcome in patients with parvovirus B19 positive endomyocardial biopsy. Clin Res Cardiol 105(1):37–52. https://doi.org/10.1007/s00392-015-0884-6 CrossRefGoogle Scholar
- 25.Grun S, Schumm J, Greulich S, Wagner A, Schneider S, Bruder O, Kispert EM, Hill S, Ong P, Klingel K, Kandolf R, Sechtem U, Mahrholdt H (2012) Long-term follow-up of biopsy-proven viral myocarditis: predictors of mortality and incomplete recovery. J Am Coll Cardiol 59(18):1604–1615. https://doi.org/10.1016/j.jacc.2012.01.007 CrossRefGoogle Scholar
- 26.Kali A, Choi EY, Sharif B, Kim YJ, Bi X, Spottiswoode B, Cokic I, Yang HJ, Tighiouart M, Conte AH, Li D, Berman DS, Choi BW, Chang HJ, Dharmakumar R (2015) Native T1 mapping by 3-T CMR imaging for characterization of chronic myocardial infarctions. JACC Cardiovasc Imaging 8(9):1019–1030. https://doi.org/10.1016/j.jcmg.2015.04.018 CrossRefGoogle Scholar
- 27.Liu D, Borlotti A, Viliani D, Jerosch-Herold M, Alkhalil M, De Maria GL, Fahrni G, Dawkins S, Wijesurendra R, Francis J, Ferreira V, Piechnik S, Robson MD, Banning A, Choudhury R, Neubauer S, Channon K, Kharbanda R, Dall’Armellina E (2017) CMR native T1 mapping allows differentiation of reversible versus irreversible myocardial damage in ST-segment-elevation myocardial infarction: an OxAMI study (Oxford acute myocardial infarction). Circ Cardiovasc Imaging 10:8. https://doi.org/10.1161/CIRCIMAGING.116.005986 CrossRefGoogle Scholar
- 28.Tahir E, Sinn M, Bohnen S, Avanesov M, Saring D, Stehning C, Schnackenburg B, Eulenburg C, Wien J, Radunski UK, Blankenberg S, Adam G, Higgins CB, Saeed M, Muellerleile K, Lund GK (2017) Acute versus chronic myocardial infarction: diagnostic accuracy of quantitative native T1 and T2 mapping versus assessment of edema on standard T2-weighted cardiovascular MR images for differentiation. Radiology 285(1):83–91. https://doi.org/10.1148/radiol.2017162338 CrossRefGoogle Scholar
- 29.Banypersad SM, Fontana M, Maestrini V, Sado DM, Captur G, Petrie A, Piechnik SK, Whelan CJ, Herrey AS, Gillmore JD, Lachmann HJ, Wechalekar AD, Hawkins PN, Moon JC (2015) T1 mapping and survival in systemic light-chain amyloidosis. Eur Heart J 36(4):244–251. https://doi.org/10.1093/eurheartj/ehu444 CrossRefGoogle Scholar
- 30.Bietenbeck M, Florian A, Shomanova Z, Klingel K, Yilmaz A (2017) Novel CMR techniques enable detection of even mild autoimmune myocarditis in a patient with systemic lupus erythematosus. Clin Res Cardiol 106(7):560–563. https://doi.org/10.1007/s00392-017-1100-7 CrossRefGoogle Scholar
- 31.Bohnen S, Radunski UK, Lund GK, Ojeda F, Looft Y, Senel M, Radziwolek L, Avanesov M, Tahir E, Stehning C, Schnackenburg B, Adam G, Blankenberg S, Muellerleile K (2017) Tissue characterization by T1 and T2 mapping cardiovascular magnetic resonance imaging to monitor myocardial inflammation in healing myocarditis. Eur Heart J Cardiovasc Imaging 18(7):744–751. https://doi.org/10.1093/ehjci/jex007 CrossRefGoogle Scholar
- 32.Ferreira VM, Piechnik SK, Dall’Armellina E, Karamitsos TD, Francis JM, Ntusi N, Holloway C, Choudhury RP, Kardos A, Robson MD, Friedrich MG, Neubauer S (2013) T(1) mapping for the diagnosis of acute myocarditis using CMR: comparison to T2-weighted and late gadolinium enhanced imaging. JACC Cardiovasc Imaging 6(10):1048–1058. https://doi.org/10.1016/j.jcmg.2013.03.008 CrossRefGoogle Scholar
- 33.Radunski UK, Lund GK, Saring D, Bohnen S, Stehning C, Schnackenburg B, Avanesov M, Tahir E, Adam G, Blankenberg S, Muellerleile K (2017) T1 and T2 mapping cardiovascular magnetic resonance imaging techniques reveal unapparent myocardial injury in patients with myocarditis. Clin Res Cardiol 106(1):10–17. https://doi.org/10.1007/s00392-016-1018-5 CrossRefGoogle Scholar