Advertisement

Clinical Research in Cardiology

, Volume 108, Issue 5, pp 563–573 | Cite as

Diagnostic and prognostic value of plasma volume status at emergency department admission in dyspneic patients: results from the PARADISE cohort

  • Tahar Chouihed
  • Patrick Rossignol
  • Adrien Bassand
  • Kévin Duarte
  • Masatake Kobayashi
  • Déborah Jaeger
  • Sonia Sadoune
  • Aurélien Buessler
  • Lionel Nace
  • Gaetan Giacomin
  • Thibaut Hutter
  • Françoise Barbé
  • Sylvain Salignac
  • Nicolas Jay
  • Faiez Zannad
  • Nicolas GirerdEmail author
Original Paper

Abstract

Background

Systemic congestion, evaluated by estimated plasma volume status (ePVS), is associated with in-hospital mortality in acute heart failure (AHF). However, the diagnostic and prognostic value of ePVS in patients with acute dyspnea has been insufficiently studied.

Objectives

To assess the association between the first ePVS calculated from blood samples on admission in the emergency department (ED) and discharge diagnosis of AHF and in-hospital mortality in patients admitted for acute dyspnea.

Methods

The study included 1369 patients admitted for dyspnea in the ED in 2015. ePVS was calculated from hematocrit and hemoglobin values at admission. Comparisons of baseline characteristics according to ePVS tertiles were carried out and then associations between ePVS and the two outcomes “AHF diagnosis” and “intra-hospital mortality” were assessed using a logistic regression model.

Results

36.6% had a BNP > 400 pg/mL and median ePVS was 4.58 dL/g [3.96–5.55]. Overall in-hospital mortality was 11.1% (n = 149). In multivariable analysis, the third ePVS tertile (> 5.12 dL/g) had a significantly increased risk of having AHF (OR = 1.64 [1.16–2.33], p = 0.005). In-hospital mortality rose across ePVS tertiles (8.4–13.8% p < 0.01). ePVS greater than the first or second tertile threshold (respectively, 4.17 dL/g and 5.12 dL/g) were both significantly associated with a higher risk of in-hospital mortality (OR for 2nd/3rd tertile = 2.06 [1.25–3.38], p = 0.004 and OR for 3rd tertile = 1.54 [1.01–2.36], p = 0.04).

Conclusion

Higher ePVS values determined from first blood sample at admission are associated with a higher probability of AHF and in-hospital mortality in patients admitted in the ED for acute dyspnea.

Keywords

Congestion Estimated plasma volume status Acute dyspnea Emergency Acute heart failure Mortality 

Abbreviations

AHF

Acute heart failure

BNP

Brain natriuretic peptide

CI

Confidence interval

ED

Emergency department

eGFR

Estimated glomerular filtration rate

ePVS

Estimated plasma volume status

HF

Heart failure

Ht

Hematocrit

Hb

Hemoglobin

OR

Odds ratios

Notes

Acknowledgements

We thank Pierre Pothier for editing the manuscript. TC, KD, PR, FZ and NG are supported by the French National Research Agency Fighting Heart Failure (ANR-15-RHU-0004) and GEENAGE Lorraine Université d’Excellence programs and by Contrat de Plan État Région Lorraine and FEDER IT2MP. We also thank Frederic Arnoux for biological data extraction.

Compliance with ethical standards

Conflict of interest

Dr Chouihed and Dr. Girerd have received board membership fees from Novartis. Dr. Rossignol received fees from Relypsa. Dr. Zannad has received fees for serving on the board of Boston Scientific; consulting fees from Novartis, Takeda, AstraZeneca, Boehringer Ingelheim, GE Healthcare, Relypsa, Servier, Boston Scientific, Bayer, Johnson and Johnson, and Resmed; and speakers’ fees from Pfizer and AstraZeneca. He and Dr. Rossignol are cofounders of CardioRenal diagnosticS.

Supplementary material

392_2018_1388_MOESM1_ESM.docx (26 kb)
Supplementary material 1 (DOCX 26 KB)
392_2018_1388_MOESM2_ESM.docx (15 kb)
Supplementary material 2 (DOCX 15 KB)
392_2018_1388_MOESM3_ESM.docx (17 kb)
Supplementary material 3 (DOCX 17 KB)
392_2018_1388_MOESM4_ESM.docx (17 kb)
Supplementary material 4 (DOCX 16 KB)
392_2018_1388_MOESM5_ESM.docx (17 kb)
Supplementary material 5 (DOCX 17 KB)

References

  1. 1.
    Khera R, Pandey A, Ayers CR et al (2017) Contemporary epidemiology of heart failure in fee-for-service medicare beneficiaries across healthcare settings. Circ Heart Fail.  https://doi.org/10.1161/CIRCHEARTFAILURE.117.004402 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Van Aelst LNL, Arrigo M, Placido R et al (2017) Acutely decompensated heart failure with preserved and reduced ejection fraction present with comparable haemodynamic congestion. Eur J Heart Fail.  https://doi.org/10.1002/ejhf.1050 CrossRefPubMedGoogle Scholar
  3. 3.
    Chouihed T, Manzo-Silberman S, Peschanski N et al (2016) Management of suspected acute heart failure dyspnea in the emergency department: results from the French prospective multicenter DeFSSICA survey. Scand J Trauma Resusc Emerg Med 24:112.  https://doi.org/10.1186/s13049-016-0300-x CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ray P, Birolleau S, Lefort Y et al (2006) Acute respiratory failure in the elderly: etiology, emergency diagnosis and prognosis. Crit Care Lond Engl 10:R82.  https://doi.org/10.1186/cc4926 CrossRefGoogle Scholar
  5. 5.
    Wuerz RC, Meador SA (1992) Effects of prehospital medications on mortality and length of stay in congestive heart failure. Ann Emerg Med 21:669–674CrossRefPubMedGoogle Scholar
  6. 6.
    Peacock WF, Emerman C, Costanzo MR et al (2009) Early vasoactive drugs improve heart failure outcomes. Congest Heart Fail Greenwich Conn 15:256–264.  https://doi.org/10.1111/j.1751-7133.2009.00112.x CrossRefGoogle Scholar
  7. 7.
    Matsue Y, Damman K, Voors AA et al (2017) Time-to-furosemide treatment and mortality in patients hospitalized with acute heart failure. J Am Coll Cardiol 69:3042–3051.  https://doi.org/10.1016/j.jacc.2017.04.042 CrossRefPubMedGoogle Scholar
  8. 8.
    Mebazaa A, Gheorghiade M, Piña IL et al (2008) Practical recommendations for prehospital and early in-hospital management of patients presenting with acute heart failure syndromes. Crit Care Med 36:S129–S139.  https://doi.org/10.1097/01.CCM.0000296274.51933.4C CrossRefPubMedGoogle Scholar
  9. 9.
    Miró Ò, Hazlitt M, Escalada X et al (2018) Effects of the intensity of prehospital treatment on short-term outcomes in patients with acute heart failure: the SEMICA-2 study. Clin Res Cardiol Off J Ger Card Soc 107:347–361.  https://doi.org/10.1007/s00392-017-1190-2 CrossRefGoogle Scholar
  10. 10.
    Wang CS, FitzGerald JM, Schulzer M et al (2005) Does this dyspneic patient in the emergency department have congestive heart failure? JAMA 294:1944–1956.  https://doi.org/10.1001/jama.294.15.1944 CrossRefPubMedGoogle Scholar
  11. 11.
    Miró Ò, Gil V, Martín-Sánchez FJ et al (2018) Short-term outcomes of heart failure patients with reduced and preserved ejection fraction after acute decompensation according to the final destination after emergency department care. Clin Res Cardiol Off J Ger Card Soc 107:698–710.  https://doi.org/10.1007/s00392-018-1237-z CrossRefGoogle Scholar
  12. 12.
    Movilli E, Cancarini GC, Cassamali S et al (2004) Inter-dialytic variations in blood volume and total body water in uraemic patients treated by dialysis. Nephrol Dial Transpl Off Publ Eur Dial Transpl Assoc Eur Ren Assoc 19:185–189Google Scholar
  13. 13.
    Duarte K, Monnez J-M, Albuisson E et al (2015) Prognostic value of estimated plasma volume in heart failure. JACC Heart Fail 3:886–893.  https://doi.org/10.1016/j.jchf.2015.06.014 CrossRefPubMedGoogle Scholar
  14. 14.
    Yoshihisa A, Abe S, Sato Y et al (2017) Plasma volume status predicts prognosis in patients with acute heart failure syndromes. Eur Heart J Acute Cardiovasc Care.  https://doi.org/10.1177/2048872617690889 CrossRefPubMedGoogle Scholar
  15. 15.
    Bilchick KC, Chishinga N, Parker AM et al (2018) Plasma volume and renal function predict six-month survival after hospitalization for acute decompensated heart failure. Cardiorenal Med.  https://doi.org/10.1159/000481149 CrossRefGoogle Scholar
  16. 16.
    McMurray JJV, Adamopoulos S, Anker SD et al (2012) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 33:1787–1847.  https://doi.org/10.1093/eurheartj/ehs104 CrossRefGoogle Scholar
  17. 17.
    Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Rev Espanola Cardiol Engl Ed 69:1167.  https://doi.org/10.1016/j.rec.2016.11.005 CrossRefGoogle Scholar
  18. 18.
    Cotter G, Davison BA, Butler J et al (2018) Relationship between baseline systolic blood pressure and long-term outcomes in acute heart failure patients treated with TRV027: an exploratory subgroup analysis of BLAST-AHF. Clin Res Cardiol Off J Ger Card Soc 107:170–181.  https://doi.org/10.1007/s00392-017-1168-0 CrossRefGoogle Scholar
  19. 19.
    Legrand M, Ludes P-O, Massy Z et al (2018) Association between hypo- and hyperkalemia and outcome in acute heart failure patients: the role of medications. Clin Res Cardiol Off J Ger Card Soc 107:214–221.  https://doi.org/10.1007/s00392-017-1173-3 CrossRefGoogle Scholar
  20. 20.
    Pivetta E, Goffi A, Lupia E et al (2015) Lung ultrasound-implemented diagnosis of acute decompensated heart failure in the ED: a SIMEU multicenter study. Chest 148:202–210.  https://doi.org/10.1378/chest.14-2608 CrossRefGoogle Scholar
  21. 21.
    Roberts E, Ludman AJ, Dworzynski K et al (2015) The diagnostic accuracy of the natriuretic peptides in heart failure: systematic review and diagnostic meta-analysis in the acute care setting. BMJ 350:h910CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Peacock WF, Emerman CL (2004) Emergency department management of patients with acute decompensated heart failure. Heart Fail Rev 9:187–193.  https://doi.org/10.1007/s10741-005-6128-5 CrossRefPubMedGoogle Scholar
  23. 23.
    Ishihara S, Gayat E, Sato N et al (2016) Similar hemodynamic decongestion with vasodilators and inotropes: systematic review, meta-analysis, and meta-regression of 35 studies on acute heart failure. Clin Res Cardiol Off J Ger Card Soc 105:971–980.  https://doi.org/10.1007/s00392-016-1009-6 CrossRefGoogle Scholar
  24. 24.
    Maisel AS, Peacock WF, McMullin N et al (2008) Timing of immunoreactive B-type natriuretic peptide levels and treatment delay in acute decompensated heart failure: an ADHERE (Acute Decompensated Heart Failure National Registry) analysis. J Am Coll Cardiol 52:534–540.  https://doi.org/10.1016/j.jacc.2008.05.010 CrossRefPubMedGoogle Scholar
  25. 25.
    Smith WR, Poses RM, McClish DK et al (2002) Prognostic judgments and triage decisions for patients with acute congestive heart failure. Chest 121:1610–1617CrossRefPubMedGoogle Scholar
  26. 26.
    Lee DS, Stitt A, Austin PC et al (2012) Prediction of heart failure mortality in emergent care: a cohort study. Ann Intern Med 156:767–775.  https://doi.org/10.7326/0003-4819-156-11-201206050-00003 (W-261, W-262) CrossRefPubMedGoogle Scholar
  27. 27.
    Peterson PN, Rumsfeld JS, Liang L et al (2010) Treatment and risk in heart failure: gaps in evidence or quality? Circ Cardiovasc Qual Outcomes 3:309–315.  https://doi.org/10.1161/CIRCOUTCOMES.109.879478 CrossRefPubMedGoogle Scholar
  28. 28.
    Llorens P, Javaloyes P, Martín-Sánchez FJ et al (2018) Time trends in characteristics, clinical course, and outcomes of 13,791 patients with acute heart failure. Clin Res Cardiol Off J Ger Card Soc.  https://doi.org/10.1007/s00392-018-1261-z CrossRefGoogle Scholar
  29. 29.
    Hudson SR, Chan D, Ng LL (2016) Change in plasma volume and prognosis in acute decompensated heart failure: an observational cohort study. J R Soc Med 109:337–346.  https://doi.org/10.1177/0141076816661316 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Strauss MB, Davis RK, Rosenbaum JD, Rossmeisl EC (1951) Water diuresis produced during recumbency by the intravenous infusion of isotonic saline solution. J Clin Invest 30:862–868.  https://doi.org/10.1172/JCI102501 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mullens W, Abrahams Z, Francis GS et al (2009) Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol 53:589–596.  https://doi.org/10.1016/j.jacc.2008.05.068 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Harjola V-P, Mullens W, Banaszewski M et al (2017) Organ dysfunction, injury and failure in acute heart failure: from pathophysiology to diagnosis and management. A review on behalf of the Acute Heart Failure Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur J Heart Fail.  https://doi.org/10.1002/ejhf.872 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Parrinello G, Greene SJ, Torres D et al (2015) Water and sodium in heart failure: a spotlight on congestion. Heart Fail Rev 20:13–24.  https://doi.org/10.1007/s10741-014-9438-7 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Cuthbert JJ, Kearsley JW, Kazmi S et al (2018) The impact of heart failure and chronic obstructive pulmonary disease on mortality in patients presenting with breathlessness. Clin Res Cardiol Off J Ger Card Soc.  https://doi.org/10.1007/s00392-018-1342-z CrossRefGoogle Scholar
  35. 35.
    Gheorghiade M, Follath F, Ponikowski P et al (2010) Assessing and grading congestion in acute heart failure: a scientific statement from the acute heart failure committee of the heart failure association of the European Society of Cardiology and endorsed by the European Society of Intensive Care Medicine. Eur J Heart Fail 12:423–433.  https://doi.org/10.1093/eurjhf/hfq045 CrossRefPubMedGoogle Scholar
  36. 36.
    Rame JE, Dries DL, Drazner MH (2003) The prognostic value of the physical examination in patients with chronic heart failure. Congest Heart Fail Greenwich Conn 9:170–175, 178CrossRefGoogle Scholar
  37. 37.
    Girerd N, Seronde M-F, Coiro S et al (2017) Integrative assessment of congestion in heart failure throughout the patient journey. JACC Heart Fail.  https://doi.org/10.1016/j.jchf.2017.09.023 CrossRefPubMedGoogle Scholar
  38. 38.
    Palazzuoli A, Ruocco G, Beltrami M et al (2018) Combined use of lung ultrasound, B-type natriuretic peptide, and echocardiography for outcome prediction in patients with acute HFrEF and HFpEF. Clin Res Cardiol Off J Ger Card Soc 107:586–596.  https://doi.org/10.1007/s00392-018-1221-7 CrossRefGoogle Scholar
  39. 39.
    Papolos A, Narula J, Bavishi C et al (2016) U.S. hospital use of echocardiography: insights from the nationwide inpatient sample. J Am Coll Cardiol 67:502–511.  https://doi.org/10.1016/j.jacc.2015.10.090 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Tahar Chouihed
    • 1
    • 2
    • 3
    • 5
  • Patrick Rossignol
    • 2
    • 3
    • 5
  • Adrien Bassand
    • 1
    • 2
    • 3
  • Kévin Duarte
    • 2
    • 3
    • 6
    • 7
    • 8
  • Masatake Kobayashi
    • 2
    • 3
    • 4
  • Déborah Jaeger
    • 1
    • 2
    • 3
  • Sonia Sadoune
    • 1
  • Aurélien Buessler
    • 1
  • Lionel Nace
    • 9
  • Gaetan Giacomin
    • 1
  • Thibaut Hutter
    • 1
  • Françoise Barbé
    • 10
  • Sylvain Salignac
    • 11
  • Nicolas Jay
    • 12
    • 13
  • Faiez Zannad
    • 2
    • 3
    • 5
    • 14
  • Nicolas Girerd
    • 2
    • 3
    • 5
    • 14
    Email author
  1. 1.Emergency DepartmentUniversity Hospital of NancyVandoeuvre les NancyFrance
  2. 2.INSERM, Centre d’Investigations Cliniques Plurithématique 1433Institut Lorrain du Coeur et des VaisseauxVandoeuvre les NancyFrance
  3. 3.Groupe choc, Faculté de MédecineINSERM U1116Vandoeuvre les NancyFrance
  4. 4.Department of CardiologyTokyo Medical UniversityTokyoJapan
  5. 5.F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists)NancyFrance
  6. 6.Université de Lorraine, Institut Elie Cartan de Lorraine, Unité Mixte de Recherche 7502Vandoeuvre-lès-NancyFrance
  7. 7.Centre National de la Recherche Scientifique, Institut Elie Cartan de Lorraine, Unité Mixte de Recherche 7502Vandoeuvre-lès-NancyFrance
  8. 8.INRIA, Project-Team BIGSVillers-lès-NancyFrance
  9. 9.Réanimation MédicaleHôpital Central, CHRU NancyVandoeuvre les NancyFrance
  10. 10.Biochimie, Biologie moléculaire, Nutrition, Métabolisme, Hôpital de BraboisCHRU NancyNancyFrance
  11. 11.Hématologie, Hôpital de Brabois, CHRU NancyVandoeuvre les NancyFrance
  12. 12.Department of Medical InformaticsUniversity HospitalVandoeuvre les NancyFrance
  13. 13.Orpailleur, LORIA UMR 7503Vandoeuvre les NancyFrance
  14. 14.Pôle de Cardiologie, Institut Lorrain du Coeur et des VaisseauxCHRU NancyVandoeuvre les NancyFrance

Personalised recommendations