Clinical Research in Cardiology

, Volume 108, Issue 1, pp 83–92 | Cite as

Transcatheter valve-in-valve implantation (VinV-TAVR) for failed surgical aortic bioprosthetic valves

  • Bernhard Wernly
  • Ann-Katrin Zappe
  • Axel Unbehaun
  • Jan-Malte Sinning
  • Christian Jung
  • Won-Keun Kim
  • Stephan Fichtlscherer
  • Michael Lichtenauer
  • Uta C. Hoppe
  • Brunilda Alushi
  • Frederik Beckhoff
  • Charlotte Wewetzer
  • Marcus Franz
  • Daniel Kretzschmar
  • Eliano Navarese
  • Ulf Landmesser
  • Volkmar Falk
  • Alexander LautenEmail author
Original Paper



We sought to investigate the procedural and hemodynamic outcome after valve-in-valve transcatheter aortic valve replacement (VinV-TAVR) for different surgical (SBV) and transcatheter (TAVR) bioprosthetic valves.

Methods and results

223 patients (76 ± 11years, STS-Score 8.3 ± 10.1) suffering from SBV failure treated with VinV-TAVR were enrolled at 6 centers across Germany. At time of the intervention, the majority of patients were in NYHA-class ≥ III (88%, n = 180). Failure mode of the SBVs was either stenosis, regurgitation (AR) or a combination of both in 85 (38%), 76 (34%) and 62 (28%) patients, respectively. 138 (62%) patients were treated with first generation TAVR valves (Edwards Sapien XT or CoreValve). Second generation valves were implanted in 85 (38%) patients (Sapien 3, Medtronic CoreValve Evolut, SJM-Portico, JenaValve). VinV-TAVR was associated with high procedural success rate, conversion to surgery was necessary in 3 (2%) patients. After VinV-TAVR procedure, 4 (2%) patients suffered from ≥ moderate AR. In 6 (3%) patients a second valve was implanted due to mispositioning of the first valve and subsequent severe paravalvular AR. Coronary obstruction was observed in 4 (2%) patients. Major bleeding and cerebrovascular complications (according to VARC) were reported in 3 (1%) and 4 (2%) patients at 30 days. Post-interventionally, 44/178 (25%) patients evidenced a mean pressure gradient (mPG) ≥ 20 mmHg. Residual stenosis was not associated with increased mortality (HR 0.39; 95% CI 0.13–1.22; p = 0.11).


In VinV-TAVR for SBV-failure is a safe procedure resulting in hemodynamic improvement in the majority of patients. Residual stenosis is a common finding which can be observed in 1/4 of patients undergoing VinV-TAVR. However, this condition is not associated with increased 1-year-mortality.


TAVI Valve-in-valve Transcatheter aortiv valve implantation TAVR Residual stenosis 


  1. 1.
    Doenst T, Essa Y, Jacoub K, Moschovas A, Gonzalez-Lopez D, Kirov H, Diab M, Bargenda S, Faerber G (2017) Cardiac surgery 2016 reviewed. Clin Res Cardiol 106(11):851–867Google Scholar
  2. 2.
    Dvir D, Bourguignon T, Otto CM, Hahn RT, Rosenhek R, Webb JG, Treede H, Sarano ME, Feldman T, Wijeysundera HC et al (2018) Standardized definition of structural valve degeneration for surgical and transcatheter bioprosthetic aortic valves. Circulation 137(4):388–399Google Scholar
  3. 3.
    Figulla HR, Webb JG, Lauten A, Feldman T (2016) The transcatheter valve technology pipeline for treatment of adult valvular heart disease. Eur Heart J 37(28):2226–2239Google Scholar
  4. 4.
    Lauten A, Laube A, Schubert H, Bischoff S, Nietzsche S, Horstkotter K, Poudel-Bochmann B, Franz M, Lichtenberg A, Figulla HR et al (2015) Transcatheter treatment of tricuspid regurgitation by caval valve implantation–experimental evaluation of decellularized tissue valves in central venous position. Catheter Cardiovasc Interv 85(1):150–160Google Scholar
  5. 5.
    Hollander KN, Montealegre-Gallegos M, Mahmood F (2016) Valve-in-valve-in homograft: a case of a repeat transcatheter aortic valve replacement in a patient with an aortic homograft. Ann Card Anaesth 19(4):737–739Google Scholar
  6. 6.
    Noorani A, Radia R, Bapat V (2015) Challenges in valve-in-valve therapy. J Thorac Dis 7(9):1501–1508Google Scholar
  7. 7.
    Cote N, Pibarot P, Clavel MA (2017) Incidence, risk factors, clinical impact, and management of bioprosthesis structural valve degeneration. Curr Opin Cardiol 32(2):123–129Google Scholar
  8. 8.
    Senage T, Le Tourneau T, Foucher Y, Pattier S, Cueff C, Michel M, Serfaty JM, Mugniot A, Perigaud C, Carton HF et al (2014) Early structural valve deterioration of Mitroflow aortic bioprosthesis: mode, incidence, and impact on outcome in a large cohort of patients. Circulation 130(23):2012–2020Google Scholar
  9. 9.
    Smith CR, Leon MB, Mack MJ, Miller DC, Moses JW, Svensson LG, Tuzcu EM, Webb JG, Fontana GP, Makkar RR et al (2011) Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med 364(23):2187–2198Google Scholar
  10. 10.
    Leon MB, Smith CR, Mack M, Miller DC, Moses JW, Svensson LG, Tuzcu EM, Webb JG, Fontana GP, Makkar RR et al (2010) Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med 363(17):1597–1607Google Scholar
  11. 11.
    Schaefer A, Neumann N, Linder M, Schofer N, Schneeberger Y, Deuschl F, Schoen G, Blankenberg S, Reichenspurner H, Conradi L et al. (2018) Outcomes with a latest generation self-expandable, intra-annular, re-sheathable transcatheter heart valve system: analysis of patients with impaired left ventricular function and determinants for pacemaker implantation. Clin Res Cardiol. Google Scholar
  12. 12.
    Geis NA, Kiriakou C, Chorianopoulos E, Uhlmann L, Katus HA, Bekeredjian R (2018) NOAC monotherapy in patients with concomitant indications for oral anticoagulation undergoing transcatheter aortic valve implantation. Clin Res Cardiol. Google Scholar
  13. 13.
    Vernikouskaya I, Rottbauer W, Seeger J, Gonska B, Rasche V, Wohrle J (2018) Patient-specific registration of 3D CT angiography (CTA) with X-ray fluoroscopy for image fusion during transcatheter aortic valve implantation (TAVI) increases performance of the procedure. Clin Res Cardiol 107(6):507–516Google Scholar
  14. 14.
    Eichler S, Salzwedel A, Harnath A, Butter C, Wegscheider K, Chiorean M, Voller H, Reibis R (2018) Nutrition and mobility predict all-cause mortality in patients 12 months after transcatheter aortic valve implantation. Clin Res Cardiol 107(4):304–311Google Scholar
  15. 15.
    Gaede L, Kim WK, Liebetrau C, Dorr O, Sperzel J, Blumenstein J, Berkowitsch A, Walther T, Hamm C, Elsasser A et al (2018) Pacemaker implantation after TAVI: predictors of AV block persistence. Clin Res Cardiol 107(1):60–69Google Scholar
  16. 16.
    Kim WK, Blumenstein J, Liebetrau C, Rolf A, Gaede L, Van Linden A, Arsalan M, Doss M, Tijssen JGP, Hamm CW et al (2017) Comparison of outcomes using balloon-expandable versus self-expanding transcatheter prostheses according to the extent of aortic valve calcification. Clin Res Cardiol 106(12):995–1004Google Scholar
  17. 17.
    Abdelghani M, Cavalcante R, Miyazaki Y, de Winter RJ, Sarmento-Leite R, Mangione JA, Abizaid A, Lemos PA, Serruys PW, de Brito FS, Jr. (2017) Prevalence, predictors, and prognostic implications of residual impairment of functional capacity after transcatheter aortic valve implantation. Clin Res Cardiol 106(9):752–759Google Scholar
  18. 18.
    Gonska B, Seeger J, Kessler M, von Keil A, Rottbauer W, Wohrle J (2017) Predictors for permanent pacemaker implantation in patients undergoing transfemoral aortic valve implantation with the Edwards Sapien 3 valve. Clin Res Cardiol 106(8):590–597Google Scholar
  19. 19.
    Ruile P, Jander N, Blanke P, Schoechlin S, Reinohl J, Gick M, Rothe J, Langer M, Leipsic J, Buettner HJ et al (2017) Course of early subclinical leaflet thrombosis after transcatheter aortic valve implantation with or without oral anticoagulation. Clin Res Cardiol 106(2):85–95Google Scholar
  20. 20.
    Arsalan M, Filardo G, Kim WK, Squiers JJ, Pollock B, Liebetrau C, Blumenstein J, Kempfert J, Van Linden A, Arsalan-Werner A et al (2016) Prognostic value of body mass index and body surface area on clinical outcomes after transcatheter aortic valve implantation. Clin Res Cardiol 105(12):1042–1048Google Scholar
  21. 21.
    Kim WK, Meyer A, Mollmann H, Rolf A, Mollmann S, Blumenstein J, Van Linden A, Hamm CW, Walther T, Kempfert J (2016) Cyclic changes in area- and perimeter-derived effective dimensions of the aortic annulus measured with multislice computed tomography and comparison with metric intraoperative sizing. Clin Res Cardiol 105(7):622–629Google Scholar
  22. 22.
    Schaefer A, Linder M, Treede H, Deuschl F, Schofer N, Seiffert M, Schneeberger Y, Blankenberg S, Reichenspurner H, Schaefer U et al (2016) Applicability of next generation balloon-expandable transcatheter heart valves in aortic annuli exceeding formally approved dimensions. Clin Res Cardiol 105(7):585–591Google Scholar
  23. 23.
    Kim WK, Liebetrau C, van Linden A, Blumenstein J, Gaede L, Hamm CW, Walther T, Mollmann H (2016) Myocardial injury associated with transcatheter aortic valve implantation (TAVI). Clin Res Cardiol 105(5):379–387Google Scholar
  24. 24.
    Abdul-Jawad Altisent O, Ferreira-Gonzalez I, Marsal JR, Ribera A, Auger C, Ortega G, Cascant P, Urena M, Del Blanco BG, Serra V et al (2016) Neurological damage after transcatheter aortic valve implantation compared with surgical aortic valve replacement in intermediate risk patients. Clin Res Cardiol 105(6):508–517Google Scholar
  25. 25.
    Schewel J, Schewel D, Frerker C, Wohlmuth P, Kuck KH, Schafer U (2016) Invasive hemodynamic assessments during transcatheter aortic valve implantation: comparison of patient outcomes in higher vs. lower transvalvular gradients with respect to left ventricular ejection fraction. Clin Res Cardiol 105(1):59–71Google Scholar
  26. 26.
    Fuchs FC, Hammerstingl C, Sinning JM, Mellert F, Werner N, Grube E, Nickenig G (2016) Antegrade transcatheter mitral valve-in-valve implantation with combined atrial septal defect closure. Clin Res Cardiol 105(5):460–462Google Scholar
  27. 27.
    Yadlapati A, Groh C, Malaisrie SC, Gajjar M, Kruse J, Meyers S, Passman R (2016) Efficacy and safety of novel oral anticoagulants in patients with bioprosthetic valves. Clin Res Cardiol 105(3):268–272Google Scholar
  28. 28.
    Lauten A, Ferrari M, Goebel B, Rademacher W, Schumm J, Uth O, Kiehntopf M, Figulla HR, Jung C (2011) Microvascular tissue perfusion is impaired in acutely decompensated heart failure and improves following standard treatment. Eur J Heart Fail 13(7):711–717Google Scholar
  29. 29.
    Mauri V, Deuschl F, Frohn T, Schofer N, Linder M, Kuhn E, Schaefer A, Rudolph V, Madershahian N, Conradi L et al. (2018) Predictors of paravalvular regurgitation and permanent pacemaker implantation after TAVR with a next-generation self-expanding device. Clin Res Cardiol. Google Scholar
  30. 30.
    Fritzenwanger M, Jung C, Goebel B, Lauten A, Figulla HR (2011) Impact of short-term systemic hypoxia on phagocytosis, cytokine production, and transcription factor activation in peripheral blood cells. Mediators Inflamm 2011:429501Google Scholar
  31. 31.
    Buckert D, Cieslik M, Tibi R, Radermacher M, Rasche V, Bernhardt P, Hombach V, Rottbauer W, Wohrle J (2018) Longitudinal strain assessed by cardiac magnetic resonance correlates to hemodynamic findings in patients with severe aortic stenosis and predicts positive remodeling after transcatheter aortic valve replacement. Clin Res Cardiol 107(1):20–29Google Scholar
  32. 32.
    Lauten A, Gerhard-Garcia A, Suhr F, Fischer JH, Figulla HR, Bloch W (2014) Impact of ischemia-reperfusion on extracellular matrix processing and structure of the basement membrane of the heart. PLoS One 9(3):e92833Google Scholar
  33. 33.
    Bleiziffer S, Bosmans J, Brecker S, Gerckens U, Wenaweser P, Tamburino C, Linke A, Investigators AS (2017) Insights on mid-term TAVR performance: 3-year clinical and echocardiographic results from the CoreValve ADVANCE study. Clin Res Cardiol 106(10):784–795Google Scholar
  34. 34.
    Bleiziffer S, Erlebach M, Simonato M, Pibarot P, Webb J, Capek L, Windecker S, George I, Sinning JM, Horlick E et al. (2018) Incidence, predictors and clinical outcomes of residual stenosis after aortic valve-in-valve. Heart. Google Scholar
  35. 35.
    Webb JG, Mack MJ, White JM, Dvir D, Blanke P, Herrmann HC, Leipsic J, Kodali SK, Makkar R, Miller DC et al (2017) Transcatheter Aortic valve implantation within degenerated aortic surgical bioprostheses: PARTNER 2 valve-in-valve registry. J Am Coll Cardiol 69(18):2253–2262Google Scholar
  36. 36.
    Mollmann H, Linke A, Holzhey DM, Walther T, Manoharan G, Schafer U, Heinz-Kuck K, Van Boven AJ, Redwood SR, Kovac J et al (2017) Implantation and 30-day follow-up on all 4 valve sizes within the portico transcatheter aortic bioprosthetic family. JACC Cardiovasc Interv 10(15):1538–1547Google Scholar
  37. 37.
    Baumgartner H, Falk V, Bax JJ, De Bonis M, Hamm C, Holm PJ, Iung B, Lancellotti P, Lansac E, Munoz DR et al. (2017) 2017 ESC/EACTS guidelines for the management of valvular heart disease: the task force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European association for cardio-thoracic surgery (EACTS). Eur Heart J 38(36):2739–2791Google Scholar
  38. 38.
    Bonow RO, Carabello BA, Chatterjee K, de Leon AC Jr, Faxon DP, Freed MD, Gaasch WH, Lytle BW, Nishimura RA, O’Gara PT et al (2008) 2008 Focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to revise the 1998 guidelines for the management of patients with valvular heart disease): endorsed by the society of cardiovascular anesthesiologists, society for cardiovascular angiography and interventions, and society of thoracic surgeons. Circulation 118(15):e523–e661Google Scholar
  39. 39.
    Leon MB, Piazza N, Nikolsky E, Blackstone EH, Cutlip DE, Kappetein AP, Krucoff MW, Mack M, Mehran R, Miller C et al (2011) Standardized endpoint definitions for transcatheter aortic valve implantation clinical trials: a consensus report from the valve academic research consortium. Eur Heart J 32(2):205–217Google Scholar
  40. 40.
    Deeb GM, Chetcuti SJ, Reardon MJ, Patel HJ, Grossman PM, Schreiber T, Forrest JK, Bajwa TK, O’Hair DP, Petrossian G et al (2017) 1-year results in patients undergoing transcatheter aortic valve replacement with failed surgical bioprostheses. JACC Cardiovasc Interv 10(10):1034–1044Google Scholar
  41. 41.
    Bleiziffer S, Erlebach M, Simonato M, Pibarot P, Webb J, Capek L, Windecker S, George I, Sinning JM, Horlick E et al (2018) Incidence, predictors and clinical outcomes of residual stenosis after aortic valve-in-valve. Heart 104(10):828–834Google Scholar
  42. 42.
    Pibarot P, Simonato M, Barbanti M, Linke A, Kornowski R, Rudolph T, Spence M, Moat N, Aldea G, Mennuni M et al (2018) Impact of pre-existing prosthesis-patient mismatch on survival following aortic valve-in-valve procedures. JACC Cardiovasc Interv 11(2):133–141Google Scholar
  43. 43.
    Jung C, Lichtenauer M, Figulla HR, Wernly B, Goebel B, Foerster M, Edlinger C, Lauten A (2017) Microparticles in patients undergoing transcatheter aortic valve implantation (TAVI). Heart Vessels 32(4):458–466Google Scholar
  44. 44.
    Head SJ, Mokhles MM, Osnabrugge RL, Pibarot P, Mack MJ, Takkenberg JJ, Bogers AJ, Kappetein AP (2012) The impact of prosthesis-patient mismatch on long-term survival after aortic valve replacement: a systematic review and meta-analysis of 34 observational studies comprising 27 186 patients with 133 141 patient-years. Eur Heart J 33(12):1518–1529Google Scholar
  45. 45.
    Bleiziffer S, Eichinger WB, Hettich I, Ruzicka D, Wottke M, Bauernschmitt R, Lange R (2008) Impact of patient-prosthesis mismatch on exercise capacity in patients after bioprosthetic aortic valve replacement. Heart 94(5):637–641Google Scholar
  46. 46.
    Urso S, Sadaba R, Vives M, Trujillo J, Beltrame S, Soriano B, Piqueras L, Aldamiz-Echevarria G (2009) Patient-prosthesis mismatch in elderly patients undergoing aortic valve replacement: impact on quality of life and survival. J Heart Valve Dis 18(3):248–255Google Scholar
  47. 47.
    Pibarot P, Weissman NJ, Stewart WJ, Hahn RT, Lindman BR, McAndrew T, Kodali SK, Mack MJ, Thourani VH, Miller DC et al (2014) Incidence and sequelae of prosthesis-patient mismatch in transcatheter versus surgical valve replacement in high-risk patients with severe aortic stenosis: a PARTNER trial cohort—a analysis. J Am Coll Cardiol 64(13):1323–1334Google Scholar
  48. 48.
    Wernly B, Lichtenauer M, Jirak P, Eder S, Reiter C, Kammler J, Kypta A, Jung C, Franz M, Hoppe UC et al (2017) Soluble ST2 predicts 1-year outcome in patients undergoing transcatheter aortic valve implantation. Eur J Clin Invest 47(2):149–157Google Scholar
  49. 49.
    Pilgrim T, Lee JKT, O’Sullivan CJ, Stortecky S, Ariotti S, Franzone A, Lanz J, Heg D, Asami M, Praz F et al (2018) Early versus newer generation devices for transcatheter aortic valve implantation in routine clinical practice: a propensity score matched analysis. Open Heart 5(1):e000695Google Scholar
  50. 50.
    Seiffert M, Treede H, Schofer J, Linke A, Woehrle J, Baumbach H, Mehilli J, Bapat V, Simonato M, Walther T et al. (2018) Matched comparison of next- and early-generation balloon-expandable transcatheter heart valve implantations in failed surgical aortic bioprostheses. EuroIntervention. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
corrected publication August/2018

Authors and Affiliations

  • Bernhard Wernly
    • 1
  • Ann-Katrin Zappe
    • 2
  • Axel Unbehaun
    • 3
  • Jan-Malte Sinning
    • 4
  • Christian Jung
    • 5
  • Won-Keun Kim
    • 6
  • Stephan Fichtlscherer
    • 7
  • Michael Lichtenauer
    • 1
  • Uta C. Hoppe
    • 1
  • Brunilda Alushi
    • 2
  • Frederik Beckhoff
    • 2
  • Charlotte Wewetzer
    • 2
  • Marcus Franz
    • 8
  • Daniel Kretzschmar
    • 8
  • Eliano Navarese
    • 9
    • 10
    • 11
  • Ulf Landmesser
    • 2
  • Volkmar Falk
    • 3
    • 12
    • 13
  • Alexander Lauten
    • 2
    • 12
    Email author
  1. 1.Clinic of Internal Medicine II, Department of CardiologyParacelsus Medical University of SalzburgSalzburgAustria
  2. 2.Department of CardiologyCharité-Universitaetsmedizin BerlinBerlinGermany
  3. 3.German Heart Center BerlinBerlinGermany
  4. 4.Department of Medicine II, Heart Center BonnUniversity Hospital BonnBonnGermany
  5. 5.Division of Cardiology, Pulmonology, and Vascular Medicine, Medical FacultyUniversity DuesseldorfDüsseldorfGermany
  6. 6.Department of Cardiology and Cardiac SurgeryKerckhoff Heart and Lung CenterBad NauheimGermany
  7. 7.Division of Cardiology, Department of Medicine IIIGoethe University Hospital FrankfurtFrankfurt am MainGermany
  8. 8.Department of Cardiology, Universitätsherzzentrum ThüringenFriedrich Schiller University JenaJenaGermany
  9. 9.Inova Center for Thrombosis Research and Drug DevelopmentInova Heart and Vascular InstituteFairfaxUSA
  10. 10.SIRIO MEDICINE Network, Evidence-Based SectionFalls ChurchUSA
  11. 11.Cardiovascular Institute, Ludwik Rydygier Collegium MedicumNicolaus Copernicus UniversityBydgoszczPoland
  12. 12.Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK)BerlinGermany
  13. 13.Charité-UniversitätsmedizinBerlinGermany

Personalised recommendations