Advertisement

Clinical Research in Cardiology

, Volume 107, Supplement 2, pp 105–113 | Cite as

Progress in heart failure treatment in Germany

  • Mark Luedde
  • Martina E. Spehlmann
  • Norbert FreyEmail author
Review
  • 156 Downloads

Abstract

Acute and chronic heart failure is still a major cause of morbidity and mortality in Europe. Nevertheless, significant progress has been made in diagnosis and treatment of heart failure as well as in unraveling its molecular causes. Here, we focus on some relevant contributions to these achievements by German cardiovascular clinicians and scientists.

Keyword

Heart failure Biomarkers Comorbidities Structured care and education 

References

  1. 1.
    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGFC, Coats AJS, Falk V, González-Juanatey JR (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37:2129–2220CrossRefPubMedGoogle Scholar
  2. 2.
    Bootcov MR, Bauskin AR, Valenzuela SM, Moore AG, Bansal M, He XY, Zhang HP, Donnellan M, Mahler S, Pryor K, Walsh BJ, Nicholson RC, Fairlie WD, Por SB, Robbins JM, Breit SN (1997) MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proc Natl Acad Sci USA 94:11514–11519CrossRefPubMedGoogle Scholar
  3. 3.
    Kempf T, Wollert KC (2009) Growth-differentiation factor-15 in heart failure. Heart Fail Clin 5:537–547.  https://doi.org/10.1016/j.hfc.2009.04.006 CrossRefPubMedGoogle Scholar
  4. 4.
    Wallentin L, Zethelius B, Berglund L, Eggers KM, Lind L, Lindahl B, Wollert KC, Siegbahn A (2013) GDF-15 for prognostication of cardiovascular and cancer morbidity and mortality in men. PLoS One 8:e78797.  https://doi.org/10.1371/journal.pone.0078797 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wollert KC, Kempf T (2012) GDF-15 in heart failure: providing insight into end-organ dysfunction and its recovery? Eur J Heart Fail 14:1191–1193.  https://doi.org/10.1093/eurjhf/hfs158 CrossRefPubMedGoogle Scholar
  6. 6.
    Kempf T, Eden M, Strelau J, Naguib M, Willenbockel C, Tongers J, Heineke J, Kotlarz D, Xu J, Molkentin JD, Niessen HW, Drexler H, Wollert KC (2006) The transforming growth factor-beta superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ Res 98:351–360.  https://doi.org/10.1161/01.RES.0000202805.73038.48 CrossRefPubMedGoogle Scholar
  7. 7.
    Kempf T, Horn-Wichmann R, Brabant G, Peter T, Allhoff T, Klein G, Drexler H, Johnston N, Wallentin L, Wollert KC (2007) Circulating concentrations of growth-differentiation factor 15 in apparently healthy elderly individuals and patients with chronic heart failure as assessed by a new immunoradiometric sandwich assay. Clin Chem 53:284–291.  https://doi.org/10.1373/clinchem.2006.076828 CrossRefPubMedGoogle Scholar
  8. 8.
    Kempf T, Zarbock A, Widera C, Butz S, Stadtmann A, Rossaint J, Bolomini-Vittori M, Korf-Klingebiel M, Napp LC, Hansen B, Kanwischer A, Bavendiek U, Beutel G, Hapke M, Sauer MG, Laudanna C, Hogg N, Vestweber D, Wollert KC (2011) GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat Med 17:581–588.  https://doi.org/10.1038/nm.2354 CrossRefPubMedGoogle Scholar
  9. 9.
    Rosenberg M, Zugck C, Nelles M, Juenger C, Frank D, Remppis A, Giannitsis E, Katus HA, Frey N (2008) Osteopontin, a new prognostic biomarker in patients with chronic heart failure. Circ Heart Fail 1:43–49.  https://doi.org/10.1161/CIRCHEARTFAILURE.107.746172 CrossRefPubMedGoogle Scholar
  10. 10.
    Roderburg C, Benz F, Cardenas DV, Lutz M, Hippe HJ, Luedde T, Trautwein C, Frey N, Koch A, Tacke F, Luedde M (2015) Persistently elevated osteopontin serum levels predict mortality in critically ill patients. Crit Care 19:271.  https://doi.org/10.1186/s13054-015-0988-4 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Edelmann F, Holzendorf V, Wachter R, Nolte K, Schmidt AG, Kraigher-Krainer E, Duvinage A, Unkelbach I, Dungen HD, Tschope C, Herrmann-Lingen C, Halle M, Hasenfuss G, Gelbrich G, Stough WG, Pieske BM (2015) Galectin-3 in patients with heart failure with preserved ejection fraction: results from the Aldo-DHF trial. Eur J Heart Fail 17:214–223.  https://doi.org/10.1002/ejhf.203 CrossRefPubMedGoogle Scholar
  12. 12.
    Giannitsis E, Muller-Bardorff M, Lehrke S, Wiegand U, Tolg R, Weidtmann B, Hartmann F, Richardt G, Katus HA (2001) Admission troponin T level predicts clinical outcomes, TIMI flow, and myocardial tissue perfusion after primary percutaneous intervention for acute ST-segment elevation myocardial infarction. Circulation 104:630–635CrossRefPubMedGoogle Scholar
  13. 13.
    Hamm CW, Ravkilde J, Gerhardt W, Jorgensen P, Peheim E, Ljungdahl L, Goldmann B, Katus HA (1992) The prognostic value of serum troponin T in unstable angina. N Engl J Med 327:146–150.  https://doi.org/10.1056/NEJM199207163270302 CrossRefPubMedGoogle Scholar
  14. 14.
    Frankenstein L, Remppis A, Giannitis E, Frankenstein J, Hess G, Zdunek D, Doesch A, Zugck C, Katus HA (2011) Biological variation of high sensitive Troponin T in stable heart failure patients with ischemic or dilated cardiomyopathy. Clin Res Cardiol 100:633–640.  https://doi.org/10.1007/s00392-011-0285-4 CrossRefPubMedGoogle Scholar
  15. 15.
    Seliger SL, Hong SN, Christenson RH, Kronmal R, Daniels LB, Lima JAC, de Lemos JA, Bertoni A, deFilippi CR (2017) High-sensitive cardiac troponin T as an early biochemical signature for clinical and subclinical heart failure: MESA (Multi-Ethnic Study of Atherosclerosis). Circulation 135:1494–1505.  https://doi.org/10.1161/CIRCULATIONAHA.116.025505 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Haas J, Frese KS, Peil B, Kloos W, Keller A, Nietsch R, Feng Z, Muller S, Kayvanpour E, Vogel B, Sedaghat-Hamedani F, Lim WK, Zhao X, Fradkin D, Kohler D, Fischer S, Franke J, Marquart S, Barb I, Li DT, Amr A, Ehlermann P, Mereles D, Weis T, Hassel S, Kremer A, King V, Wirsz E, Isnard R, Komajda M, Serio A, Grasso M, Syrris P, Wicks E, Plagnol V, Lopes L, Gadgaard T, Eiskjaer H, Jorgensen M, Garcia-Giustiniani D, Ortiz-Genga M, Crespo-Leiro MG, Deprez RH, Christiaans I, van Rijsingen IA, Wilde AA, Waldenstrom A, Bolognesi M, Bellazzi R, Morner S, Bermejo JL, Monserrat L, Villard E, Mogensen J, Pinto YM, Charron P, Elliott P, Arbustini E, Katus HA, Meder B (2015) Atlas of the clinical genetics of human dilated cardiomyopathy. Eur Heart J 36:1123–1135.  https://doi.org/10.1093/eurheartj/ehu301 aCrossRefPubMedGoogle Scholar
  17. 17.
    Meder B, Haas J, Sedaghat-Hamedani F, Kayvanpour E, Frese K, Lai A, Nietsch R, Scheiner C, Mester S, Bordalo DM, Amr A, Dietrich C, Pils D, Siede D, Hund H, Bauer A, Holzer DB, Ruhparwar A, Mueller-Hennessen M, Weichenhan D, Plass C, Weis T, Backs J, Wuerstle M, Keller A, Katus HA, Posch AE (2017) Epigenome-Wide Association Study identifies cardiac gene patterning and a novel class of biomarkers for heart failure. Circulation 136:1528–1544.  https://doi.org/10.1161/CIRCULATIONAHA.117.027355 CrossRefPubMedGoogle Scholar
  18. 18.
    Pang L, Hu J, Zhang G, Li X, Zhang X, Yu F, Lan Y, Xu J, Pang B, Han D, Xiao Y, Li X (2016) Dysregulated long intergenic non-coding RNA modules contribute to heart failure. Oncotarget 7:59676–59690.  https://doi.org/10.18632/oncotarget.10834 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    McMurray JJ (2015) Improving outcomes in heart failure: a personal perspective. Eur Heart J 36:3467–3470.  https://doi.org/10.1093/eurheartj/ehv565 CrossRefPubMedGoogle Scholar
  20. 20.
    Bohm M, Swedberg K, Komajda M, Borer JS, Ford I, Dubost-Brama A, Lerebours G, Tavazzi L, Investigators S (2010) Heart rate as a risk factor in chronic heart failure (SHIFT): the association between heart rate and outcomes in a randomised placebo-controlled trial. Lancet 376:886–894.  https://doi.org/10.1016/S0140-6736(10)61259-7 CrossRefPubMedGoogle Scholar
  21. 21.
    Bavendiek U, Aguirre Davila L, Schwab SA, Phillip SA, Westenfeld R, Maier LS, Stoerk S, Weber K, Koch A, Bauersachs J, Group D-Hs (2017) P6168 Digitoxin serum concentrations affecting patient safety and potential outcome in patients with HFrEF-analyses of the ongoing DIGIT-HF-trial. Eur Heart J 38(suppl_1):P6168CrossRefGoogle Scholar
  22. 22.
    Digitalis Investigation G (1997) The effect of digoxin on mortality and morbidity in patients with heart failure. N Engl J Med 336:525–533.  https://doi.org/10.1056/NEJM199702203360801 CrossRefGoogle Scholar
  23. 23.
    Ahmed A, Aronow WS, Fleg JL (2006) Predictors of mortality and hospitalization in women with heart failure in the Digitalis Investigation Group trial. Am J Ther 13:325–331CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Tschope C, Birner C, Bohm M, Bruder O, Frantz S, Luchner A, Maier L, Stork S, Kherad B, Laufs U (2018) Heart failure with preserved ejection fraction: current management and future strategies: expert opinion on the behalf of the Nucleus of the “Heart Failure Working Group” of the German Society of Cardiology (DKG). Clin Res Cardiol 107:1–19.  https://doi.org/10.1007/s00392-017-1170-6 CrossRefPubMedGoogle Scholar
  25. 25.
    Ferrari R, Bohm M, Cleland JG, Paulus WJ, Pieske B, Rapezzi C, Tavazzi L (2015) Heart failure with preserved ejection fraction: uncertainties and dilemmas. Eur J Heart Fail 17:665–671.  https://doi.org/10.1002/ejhf.304 CrossRefPubMedGoogle Scholar
  26. 26.
    Bohm M, Perez AC, Jhund PS, Reil JC, Komajda M, Zile MR, McKelvie RS, Anand IS, Massie BM, Carson PE, McMurray JJ, Committees IP, Investigators (2014) Relationship between heart rate and mortality and morbidity in the irbesartan patients with heart failure and preserved systolic function trial (I-Preserve). Eur J Heart Fail 16:778–787.  https://doi.org/10.1002/ejhf.85 CrossRefPubMedGoogle Scholar
  27. 27.
    van Veldhuisen DJ, Cohen-Solal A, Bohm M, Anker SD, Babalis D, Roughton M, Coats AJ, Poole-Wilson PA, Flather MD, Investigators S (2009) Beta-blockade with nebivolol in elderly heart failure patients with impaired and preserved left ventricular ejection fraction: data from SENIORS (Study of Effects of Nebivolol Intervention on Outcomes and Rehospitalization in Seniors With Heart Failure). J Am Coll Cardiol 53:2150–2158.  https://doi.org/10.1016/j.jacc.2009.02.046 CrossRefPubMedGoogle Scholar
  28. 28.
    Westermann D, Kasner M, Steendijk P, Spillmann F, Riad A, Weitmann K, Hoffmann W, Poller W, Pauschinger M, Schultheiss HP, Tschope C (2008) Role of left ventricular stiffness in heart failure with normal ejection fraction. Circulation 117:2051–2060.  https://doi.org/10.1161/CIRCULATIONAHA.107.716886 CrossRefPubMedGoogle Scholar
  29. 29.
    Westermann D, Lindner D, Kasner M, Zietsch C, Savvatis K, Escher F, von Schlippenbach J, Skurk C, Steendijk P, Riad A, Poller W, Schultheiss HP, Tschope C (2011) Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ Heart Fail 4:44–52.  https://doi.org/10.1161/CIRCHEARTFAILURE.109.931451 CrossRefPubMedGoogle Scholar
  30. 30.
    Edelmann F, Wachter R, Schmidt AG, Kraigher-Krainer E, Colantonio C, Kamke W, Duvinage A, Stahrenberg R, Durstewitz K, Loffler M, Dungen HD, Tschope C, Herrmann-Lingen C, Halle M, Hasenfuss G, Gelbrich G, Pieske B, Aldo DHFI (2013) Effect of spironolactone on diastolic function and exercise capacity in patients with heart failure with preserved ejection fraction: the Aldo-DHF randomized controlled trial. JAMA 309:781–791.  https://doi.org/10.1001/jama.2013.905 CrossRefPubMedGoogle Scholar
  31. 31.
    Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, Clausell N, Desai AS, Diaz R, Fleg JL, Gordeev I, Harty B, Heitner JF, Kenwood CT, Lewis EF, O’Meara E, Probstfield JL, Shaburishvili T, Shah SJ, Solomon SD, Sweitzer NK, Yang S, McKinlay SM, Investigators T (2014) Spironolactone for heart failure with preserved ejection fraction. N Engl J Med 370:1383–1392.  https://doi.org/10.1056/NEJMoa1313731 CrossRefPubMedGoogle Scholar
  32. 32.
    Nolte K, Herrmann-Lingen C, Wachter R, Gelbrich G, Dungen HD, Duvinage A, Hoischen N, von Oehsen K, Schwarz S, Hasenfuss G, Halle M, Pieske B, Edelmann F (2015) Effects of exercise training on different quality of life dimensions in heart failure with preserved ejection fraction: the Ex-DHF-P trial. Eur J Prev Cardiol 22:582–593.  https://doi.org/10.1177/2047487314526071 CrossRefPubMedGoogle Scholar
  33. 33.
    Hasenfuss G, Hayward C, Burkhoff D, Silvestry FE, McKenzie S, Gustafsson F, Malek F, Van der Heyden J, Lang I, Petrie MC, Cleland JG, Leon M, Kaye DM, Investigators RL-Hs (2016) A transcatheter intracardiac shunt device for heart failure with preserved ejection fraction (REDUCE LAP-HF): a multicentre, open-label, single-arm, phase 1 trial. Lancet 387:1298–1304.  https://doi.org/10.1016/S0140-6736(16)00704-2 CrossRefPubMedGoogle Scholar
  34. 34.
    Sondergaard L, Reddy V, Kaye D, Malek F, Walton A, Mates M, Franzen O, Neuzil P, Ihlemann N, Gustafsson F (2014) Transcatheter treatment of heart failure with preserved or mildly reduced ejection fraction using a novel interatrial implant to lower left atrial pressure. Eur J Heart Fail 16:796–801.  https://doi.org/10.1002/ejhf.111 CrossRefPubMedGoogle Scholar
  35. 35.
    Zamorano JL, Lancellotti P, Rodriguez Munoz D, Aboyans V, Asteggiano R, Galderisi M, Habib G, Lenihan DJ, Lip GYH, Lyon AR, Lopez Fernandez T, Mohty D, Piepoli MF, Tamargo J, Torbicki A, Suter TM, Group ESCSD (2016) 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: the Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J 37:2768–2801.  https://doi.org/10.1093/eurheartj/ehw211 CrossRefPubMedGoogle Scholar
  36. 36.
    Ponikowski P, van Veldhuisen DJ, Comin-Colet J, Ertl G, Komajda M, Mareev V, McDonagh T, Parkhomenko A, Tavazzi L, Levesque V, Mori C, Roubert B, Filippatos G, Ruschitzka F, Anker SD, Investigators C-H (2015) Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiencydagger. Eur Heart J 36:657–668.  https://doi.org/10.1093/eurheartj/ehu385 CrossRefPubMedGoogle Scholar
  37. 37.
    Zinman B, Lachin JM, Inzucchi SE (2016) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 374:1094.  https://doi.org/10.1056/NEJMc1600827 CrossRefPubMedGoogle Scholar
  38. 38.
    von Haehling S, Jankowska EA, van Veldhuisen DJ, Ponikowski P, Anker SD (2015) Iron deficiency and cardiovascular disease. Nat Rev Cardiol 12:659–669.  https://doi.org/10.1038/nrcardio.2015.109 CrossRefGoogle Scholar
  39. 39.
    Anker SD, Comin Colet J, Filippatos G, Willenheimer R, Dickstein K, Drexler H, Luscher TF, Bart B, Banasiak W, Niegowska J, Kirwan BA, Mori C, von Eisenhart Rothe B, Pocock SJ, Poole-Wilson PA, Ponikowski P, Investigators F-HT (2009) Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med 361:2436–2448.  https://doi.org/10.1056/NEJMoa0908355 CrossRefPubMedGoogle Scholar
  40. 40.
    Haddad S, Wang Y, Galy B, Korf-Klingebiel M, Hirsch V, Baru AM, Rostami F, Reboll MR, Heineke J, Flogel U, Groos S, Renner A, Toischer K, Zimmermann F, Engeli S, Jordan J, Bauersachs J, Hentze MW, Wollert KC, Kempf T (2017) Iron-regulatory proteins secure iron availability in cardiomyocytes to prevent heart failure. Eur Heart J 38:362–372.  https://doi.org/10.1093/eurheartj/ehw333 PubMedCrossRefGoogle Scholar
  41. 41.
    von Haehling S, Ebner N, Dos Santos MR, Springer J, Anker SD (2017) Muscle wasting and cachexia in heart failure: mechanisms and therapies. Nat Rev Cardiol 14:323–341.  https://doi.org/10.1038/nrcardio.2017.51 CrossRefGoogle Scholar
  42. 42.
    Saitoh M, Dos Santos MR, Ebner N, Emami A, Konishi M, Ishida J, Valentova M, Sandek A, Doehner W, Anker SD, von Haehling S (2016) Nutritional status and its effects on muscle wasting in patients with chronic heart failure: insights from Studies Investigating Co-morbidities Aggravating Heart Failure. Wien Klin Wochenschr 128:497–504.  https://doi.org/10.1007/s00508-016-1112-8 CrossRefPubMedGoogle Scholar
  43. 43.
    Fulster S, Tacke M, Sandek A, Ebner N, Tschope C, Doehner W, Anker SD, von Haehling S (2013) Muscle wasting in patients with chronic heart failure: results from the studies investigating co-morbidities aggravating heart failure (SICA-HF). Eur Heart J 34:512–519.  https://doi.org/10.1093/eurheartj/ehs381 CrossRefPubMedGoogle Scholar
  44. 44.
    Breitbart A, Auger-Messier M, Molkentin JD, Heineke J (2011) Myostatin from the heart: local and systemic actions in cardiac failure and muscle wasting. Am J Physiol Heart Circ Physiol 300:H1973–H1982.  https://doi.org/10.1152/ajpheart.00200.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    von Haehling S, Doehner W, Anker SD (2007) Nutrition, metabolism, and the complex pathophysiology of cachexia in chronic heart failure. Cardiovasc Res 73:298–309.  https://doi.org/10.1016/j.cardiores.2006.08.018 CrossRefGoogle Scholar
  46. 46.
    Hambrecht R, Fiehn E, Weigl C, Gielen S, Hamann C, Kaiser R, Yu J, Adams V, Niebauer J, Schuler G (1998) Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation 98:2709–2715CrossRefPubMedGoogle Scholar
  47. 47.
    Hambrecht R, Gielen S, Linke A, Fiehn E, Yu J, Walther C, Schoene N, Schuler G (2000) Effects of exercise training on left ventricular function and peripheral resistance in patients with chronic heart failure: a randomized trial. JAMA 283:3095–3101CrossRefPubMedGoogle Scholar
  48. 48.
    Hambrecht R, Hilbrich L, Erbs S, Gielen S, Fiehn E, Schoene N, Schuler G (2000) Correction of endothelial dysfunction in chronic heart failure: additional effects of exercise training and oral l-arginine supplementation. J Am Coll Cardiol 35:706–713CrossRefPubMedGoogle Scholar
  49. 49.
    Hambrecht R, Niebauer J, Fiehn E, Kalberer B, Offner B, Hauer K, Riede U, Schlierf G, Kubler W, Schuler G (1995) Physical training in patients with stable chronic heart failure: effects on cardiorespiratory fitness and ultrastructural abnormalities of leg muscles. J Am Coll Cardiol 25:1239–1249.  https://doi.org/10.1016/0735-1097(94)00568-B CrossRefPubMedGoogle Scholar
  50. 50.
    Gielen S, Sandri M, Kozarez I, Kratzsch J, Teupser D, Thiery J, Erbs S, Mangner N, Lenk K, Hambrecht R, Schuler G, Adams V (2012) Exercise training attenuates MuRF-1 expression in the skeletal muscle of patients with chronic heart failure independent of age: the randomized Leipzig Exercise Intervention in Chronic Heart Failure and Aging catabolism study. Circulation 125:2716–2727.  https://doi.org/10.1161/CIRCULATIONAHA.111.047381 CrossRefPubMedGoogle Scholar
  51. 51.
    Witte KK, Nikitin NP, Parker AC, von Haehling S, Volk HD, Anker SD, Clark AL, Cleland JG (2005) The effect of micronutrient supplementation on quality-of-life and left ventricular function in elderly patients with chronic heart failure. Eur Heart J 26:2238–2244.  https://doi.org/10.1093/eurheartj/ehi442 CrossRefPubMedGoogle Scholar
  52. 52.
    Nagaya N, Moriya J, Yasumura Y, Uematsu M, Ono F, Shimizu W, Ueno K, Kitakaze M, Miyatake K, Kangawa K (2004) Effects of ghrelin administration on left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure. Circulation 110:3674–3679.  https://doi.org/10.1161/01.CIR.0000149746.62908.BB CrossRefPubMedGoogle Scholar
  53. 53.
    Schafer M, Oeing CU, Rohm M, Baysal-Temel E, Lehmann LH, Bauer R, Volz HC, Boutros M, Sohn D, Sticht C, Gretz N, Eichelbaum K, Werner T, Hirt MN, Eschenhagen T, Muller-Decker K, Strobel O, Hackert T, Krijgsveld J, Katus HA, Berriel Diaz M, Backs J, Herzig S (2016) Ataxin-10 is part of a cachexokine cocktail triggering cardiac metabolic dysfunction in cancer cachexia. Mol Metab 5:67–78.  https://doi.org/10.1016/j.molmet.2015.11.004 CrossRefPubMedGoogle Scholar
  54. 54.
    Valentova M, von Haehling S, Bauditz J, Doehner W, Ebner N, Bekfani T, Elsner S, Sliziuk V, Scherbakov N, Murin J, Anker SD, Sandek A (2016) Intestinal congestion and right ventricular dysfunction: a link with appetite loss, inflammation, and cachexia in chronic heart failure. Eur Heart J 37:1684–1691.  https://doi.org/10.1093/eurheartj/ehw008 CrossRefPubMedGoogle Scholar
  55. 55.
    Sandek A, Bauditz J, Swidsinski A, Buhner S, Weber-Eibel J, von Haehling S, Schroedl W, Karhausen T, Doehner W, Rauchhaus M, Poole-Wilson P, Volk HD, Lochs H, Anker SD (2007) Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol 50:1561–1569.  https://doi.org/10.1016/j.jacc.2007.07.016 CrossRefPubMedGoogle Scholar
  56. 56.
    Sandek A, Anker SD, von Haehling S (2009) The gut and intestinal bacteria in chronic heart failure. Curr Drug Metab 10:22–28CrossRefPubMedGoogle Scholar
  57. 57.
    Guerrero R, Margulis L, Berlanga M (2013) Symbiogenesis: the holobiont as a unit of evolution. Int Microbiol 16:133–143.  https://doi.org/10.2436/20.1501.01.188 PubMedCrossRefGoogle Scholar
  58. 58.
    Luedde M, Winkler T, Heinsen FA, Ruhlemann MC, Spehlmann ME, Bajrovic A, Lieb W, Franke A, Ott SJ, Frey N (2017) Heart failure is associated with depletion of core intestinal microbiota. ESC Heart Fail 4:282–290.  https://doi.org/10.1002/ehf2.12155 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Cui X, Ye L, Li J, Jin L, Wang W, Li S, Bao M, Wu S, Li L, Geng B, Zhou X, Zhang J, Cai J (2018) Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci Rep 8:635.  https://doi.org/10.1038/s41598-017-18756-2 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kitai T, Tang WHW (2018) Gut microbiota in cardiovascular disease and heart failure. Clin Sci (Lond) 132:85–91.  https://doi.org/10.1042/CS20171090 CrossRefGoogle Scholar
  61. 61.
    Kummen M, Mayerhofer CCK, Vestad B, Broch K, Awoyemi A, Storm-Larsen C, Ueland T, Yndestad A, Hov JR, Troseid M (2018) Gut microbiota signature in heart failure defined from profiling of 2 independent cohorts. J Am Coll Cardiol 71:1184–1186.  https://doi.org/10.1016/j.jacc.2017.12.057 CrossRefPubMedGoogle Scholar
  62. 62.
    De Bonis M, Maisano F, La Canna G, Alfieri O (2011) Treatment and management of mitral regurgitation. Nat Rev Cardiol 9:133–146.  https://doi.org/10.1038/nrcardio.2011.169 CrossRefPubMedGoogle Scholar
  63. 63.
    Boekstegers P, Hausleiter J, Baldus S, von Bardeleben RS, Beucher H, Butter C, Franzen O, Hoffmann R, Ince H, Kuck KH, Rudolph V, Schafer U, Schillinger W, Wunderlich N, Germany Society of Cardiology Working Group on Interventional Cardiology Focus Group on Interventional Mitral Valve T (2014) Percutaneous interventional mitral regurgitation treatment using the Mitra-Clip system. Clin Res Cardiol 103:85–96.  https://doi.org/10.1007/s00392-013-0614-x CrossRefPubMedGoogle Scholar
  64. 64.
    Mirabel M, Iung B, Baron G, Messika-Zeitoun D, Detaint D, Vanoverschelde JL, Butchart EG, Ravaud P, Vahanian A (2007) What are the characteristics of patients with severe, symptomatic, mitral regurgitation who are denied surgery? Eur Heart J 28:1358–1365.  https://doi.org/10.1093/eurheartj/ehm001 CrossRefPubMedGoogle Scholar
  65. 65.
    Grigioni F, Enriquez-Sarano M, Zehr KJ, Bailey KR, Tajik AJ (2001) Ischemic mitral regurgitation: long-term outcome and prognostic implications with quantitative Doppler assessment. Circulation 103:1759–1764CrossRefPubMedGoogle Scholar
  66. 66.
    Lavall D, Hagendorff A, Schirmer SH, Bohm M, Borger MA, Laufs U (2018) Mitral valve interventions in heart failure. ESC Heart Fail.  https://doi.org/10.1002/ehf2.12287 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Franzen O, van der Heyden J, Baldus S, Schluter M, Schillinger W, Butter C, Hoffmann R, Corti R, Pedrazzini G, Swaans MJ, Neuss M, Rudolph V, Surder D, Grunenfelder J, Eulenburg C, Reichenspurner H, Meinertz T, Auricchio A (2011) MitraClip(R) therapy in patients with end-stage systolic heart failure. Eur J Heart Fail 13:569–576.  https://doi.org/10.1093/eurjhf/hfr029 CrossRefPubMedGoogle Scholar
  68. 68.
    Baldus S, Schillinger W, Franzen O, Bekeredjian R, Sievert H, Schofer J, Kuck KH, Konorza T, Mollmann H, Hehrlein C, Ouarrak T, Senges J, Meinertz T, German Transcatheter Mitral Valve Interventions i (2012) MitraClip therapy in daily clinical practice: initial results from the German transcatheter mitral valve interventions (TRAMI) registry. Eur J Heart Fail 14:1050–1055.  https://doi.org/10.1093/eurjhf/hfs079 CrossRefPubMedGoogle Scholar
  69. 69.
    Geis NA, Puls M, Lubos E, Zuern CS, Franke J, Schueler R, von Bardeleben RS, Boekstegers P, Ouarrak T, Zahn R, Ince H, Senges J, Katus HA, Bekeredjian R (2018) Safety and efficacy of MitraClip therapy in patients with severely impaired left ventricular ejection fraction: results from the German transcatheter mitral valve interventions (TRAMI) registry. Eur J Heart Fail 20:598–608.  https://doi.org/10.1002/ejhf.910 CrossRefPubMedGoogle Scholar
  70. 70.
    Schau T, Isotani A, Neuss M, Schopp M, Seifert M, Hopfner C, Burkhoff D, Butter C (2016) Long-term survival after MitraClip(R) therapy in patients with severe mitral regurgitation and severe congestive heart failure: a comparison among survivals predicted by heart failure models. J Cardiol 67:287–294.  https://doi.org/10.1016/j.jjcc.2015.05.015 CrossRefPubMedGoogle Scholar
  71. 71.
    Lutter G, Pokorny S, Frank D, Cremer J, Lozonschi L (2013) Transapical mitral valve implantation: the Lutter valve. Heart Lung Vessel 5:201–206PubMedPubMedCentralGoogle Scholar
  72. 72.
    Afari ME, Syed W, Tsao L (2018) Implantable devices for heart failure monitoring and therapy. Heart Fail Rev.  https://doi.org/10.1007/s10741-018-9687-y PubMedCrossRefGoogle Scholar
  73. 73.
    Cleland JG, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L, Tavazzi L, Cardiac Resynchronization-Heart Failure Study I (2005) The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 352:1539–1549.  https://doi.org/10.1056/NEJMoa050496 CrossRefPubMedGoogle Scholar
  74. 74.
    Moss AJ, Hall WJ, Cannom DS, Klein H, Brown MW, Daubert JP, Estes NA 3rd, Foster E, Greenberg H, Higgins SL, Pfeffer MA, Solomon SD, Wilber D, Zareba W, Investigators M-CT (2009) Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med 361:1329–1338.  https://doi.org/10.1056/NEJMoa0906431 CrossRefPubMedGoogle Scholar
  75. 75.
    Goldenberg I, Moss AJ, Hall WJ, Foster E, Goldberger JJ, Santucci P, Shinn T, Solomon S, Steinberg JS, Wilber D, Barsheshet A, McNitt S, Zareba W, Klein H, Committee M-CE (2011) Predictors of response to cardiac resynchronization therapy in the Multicenter Automatic Defibrillator Implantation Trial with Cardiac Resynchronization Therapy (MADIT-CRT). Circulation 124:1527–1536.  https://doi.org/10.1161/CIRCULATIONAHA.110.014324 CrossRefPubMedGoogle Scholar
  76. 76.
    Abraham WT, Smith SA (2013) Devices in the management of advanced, chronic heart failure. Nat Rev Cardiol 10:98–110.  https://doi.org/10.1038/nrcardio.2012.178 CrossRefPubMedGoogle Scholar
  77. 77.
    Abraham WT, Kuck KH, Goldsmith RL, Lindenfeld J, Reddy VY, Carson PE, Mann DL, Saville B, Parise H, Chan R, Wiegn P, Hastings JL, Kaplan AJ, Edelmann F, Luthje L, Kahwash R, Tomassoni GF, Gutterman DD, Stagg A, Burkhoff D, Hasenfuss G (2018) A randomized controlled trial to evaluate the safety and efficacy of cardiac contractility modulation. JACC Heart Fail.  https://doi.org/10.1016/j.jchf.2018.04.010 CrossRefPubMedGoogle Scholar
  78. 78.
    Gustafsson F, Rogers JG (2017) Left ventricular assist device therapy in advanced heart failure: patient selection and outcomes. Eur J Heart Fail 19:595–602.  https://doi.org/10.1002/ejhf.779 CrossRefPubMedGoogle Scholar
  79. 79.
    Schmid C, Tjan TD, Etz C, Schmidt C, Wenzelburger F, Wilhelm M, Rothenburger M, Drees G, Scheld HH (2005) First clinical experience with the Incor left ventricular assist device. J Heart Lung Transpl 24:1188–1194.  https://doi.org/10.1016/j.healun.2004.08.024 CrossRefGoogle Scholar
  80. 80.
    Ertl G, Angermann CE, Bekeredjian R, Beyersdorf F, Güder G, Gummert J, Katus HA, Kindermann I, Pauschinger M, Perings S, Raake PWJ, Störk S, von Scheidt W, Welz S, Böhm M (2016) 2016 Empfehlung Aufbau und Organisation von Herzinsuffizienz-Netzwerken (HF-NETs) und Herzinsuffizienz-Einheiten (“Heart Failure Units”, HFUs) zur Optimierung der Behandlung der akuten und chronischen Herzinsuffizienz. Der Kardiologe 10:222CrossRefGoogle Scholar
  81. 81.
    Tschierschke R, Katus HA, Raake PWJ (2013) First “Advanced Heart Failure Unit” at the Heart Centre of the University hospital Heidelberg; example for integrated care structures for optimized treatment of terminal heart failure. Dtsch med Wochenschr 138:603–607CrossRefPubMedGoogle Scholar
  82. 82.
    Frey N, Albrecht A, Bauersachs J, Hasenfuss G, Laufs U, Luchner A, Pauschinger M, Raake P, Sack S, von Scheidt W, Schulze C, Smetak N, Subin B, Herzinsuffizienz DTFC (2018) Curriculum Herzinsuffizienz. Der Kardiologe 12:56–67CrossRefGoogle Scholar
  83. 83.
    McDonagh TA, Gardner RS, Lainscak M, Nielsen OW, Parissis J, Filippatos G, Anker SD (2014) Heart failure association of the European society of cardiology specialist heart failure curriculum. Eur J Heart Fail 16:151–162.  https://doi.org/10.1002/ejhf.41 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mark Luedde
    • 1
  • Martina E. Spehlmann
    • 1
  • Norbert Frey
    • 1
    Email author
  1. 1.Internal Medicine IIIUniversity Hospital of Schleswig HolsteinKielGermany

Personalised recommendations